
• •
PRESENTS:

Big Mac
MACRO­

ASSEMBLER/TED

•

Apple PugetSound Program Library Exchange

D ISCLAIME R..

This manual and the accompanying diskette are available only to members
of Apple Pugetsound Program Library Exchange.

A.P.P.L.E. PRODUCTS ARE SOLD " AS IS". A.P.P.LE. DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR USE.

SECTION I QUICK REFERENCE COMMAND SUMMARY

Command

C: CATALOG
L: LOAD
R: READ
S : SAVE
W: WRITE
A : APPEND
D: DRIVE
E: EDIT
Z: ZERO TABS
0: OBJ SAVE
Q: QUIT

Hlmem:
NEW
PR#
USER
TABS
LENgth
Where
MONitor
TRuncON
TRuncOF
STRIP
Quit
SYM
ASM
Delete
Replace
List
Print
I
Find
Ch<tnge
COPY
MOVE
Edit

Add
Insert

. Ctrl L
Ctrl 0
Ctrl X

Ctrl I
Ctrl 0
Ctrl D
Ctrl F
Ctrl B
Ctrl N
Ctrl L
Ctrl R
Ctrl C
Ctrl Q
[return)

Description
EXEC MODE

Display catalog and allow DOS commands
Load a source file from disk
Read a text file from disk
Save a source file to disk
Write a text file to disk
Load a source file at end of file in memory
Toggle from drive 1 to drive 2
Enter edit/asm mode
Enter edit/asm mode with tabs set to 0
Save object code after successful assembly
Exit to BASIC

EDITOR
Command Mode

Sets upper limit for source file
Deletes present source, resets Himem :
Same function as BASIC PR#
Executes user routine at $3F5
Sets tab stops for editor list ing
Returns number of bytes in source file
Retu rns memory address of specified line number
Exits to monitor. Return with Ctrl Y
Omits comments prefixed";" &ASCII, HEX obj code
Reset truncate flag to default
Strip comments prefixed "*"or";" from source
Exit to EXEC mode
Establishes user symbol tab le area
Commences assembly
Delete line number, range, or range list
As above, then falls into Insert mode
List source file with line numbers
List source without line numbers
Continue List from last line number
Find d-string specified
Replace d-string1 with d-stnng 2
Copy line number range to above specified line
As above, but deletes original lines
Edit line number or range specified

Add/insert mode
E·nter text entry mode
Enter text entry mode just above specified line
Case toggle: select opposite case
Enter non-keyboard characters
Exit text entry mode

Edit mode
Insert characteds)
Insert Control character
Delete characteds)
Find next occurrence of character after Ctr! F
Place cursor at beginning of line
Place cursor at end. of line
Change case of character under cursor
Restore line to original form
Exit Edit mode
Enter line up to cursor position
Enter entire line as it appears

Page

9
9

LC
9

LC
9

10
10
10
10
10

11
11
11
11
12
12
12
12
12
12
LC
12
LC
13
13
13
13
13
14
14
14
14
14
14

15
15
15
LC
15

16
16
16
16
16
16
16
16
16
16
16

Command

+

&

$
%

#<
fol>
#I

EQU

VAR
ORG
OBJ
SAV
PUT
CHK
END

LSTON
LST OFF
EXP ON
EXP OFF
TR ON
TR OFF
PAU
PAG
AST
SKP

ASC
DCI
INV
FLS

DA
DOB
DFB
HEX
OS

DO
ELSE
FIN

MAC
EOM
<<<
PMC
>>>

Description
ASSEMBLER EXPRESSIONS

Add
Subtract
Multiply
Divide
Exclusive or
Or
And
Decimal data
Hexadecimal data
Binary data
Immediate mode (low byte of expression)
Low byte of expression
High byte of expression
Optional syntax for above

ASSEMBLER PSEUDO-OPS
Directives

Equate label to address or data
Alternate syntax for equate
Equate special variables (])
Establish run address
Establish alternate assembly storage address
Saves object code to t his point.
Insert file during assembly
Places obj. code checksum in source
Signifies end of S0Llrce to be assembled

Formatting
Sends assembly to screen or other output
Turns off output during assembly
Prints all code during assembly
Omits printing mricro object code during assembly
Prints maximum of 3 object bytes during assembly
Resets truncate flag to deafult
Second pass assembly waits for keypress
Outputs a form feed to printer
Outputs n asterisks to assembly listing
Outputs n carriage returns to assembly listing

String
Enter a delimited ASCII string into object code
As above, but with hi bit of last chr set opposite
Enter a delimited string as inverse
Enter a delimited string as flashing

Data and Allocation
Enter two byte value, low byte first
As above, but high byte first
Enter multiple bytes of data, delimited by comma
As above, comma not required, hex data only
Reserve n bytes of space

Conditionals
If 0, discontinue assembling code
Invert the previous assembly condition set by DO
Cancel the last DO

Macros
Start of macro definition
End of macro definition
Alternate syntax for above
Assemble macro at present location
Alternate syntax for above

LC = Command available on Language Card version only.

Page

18
18
18
18
18
18
18
18
18
18
19
19
19
19

21
21
LC
21
21
LC
LC
LC
21

22
22
22
22
LC
LC
22
22
22
22

23
23
23
23

24
24
24
24
24

25
25
25

26
26
26
26
26

jlssem BJ..;;s AY-
J-i - LJc o~ o B

Big Mac
MACRO­

ASSEMBLER/TED

by
Glen E. Bredon

Copyright (c) 1981

This manual is copyrighted~ This documen,:t may not, in whole or part, be
copied, photocopied, reproduced, translated or reduced to any electronic
medium or machine readable form without prior written consent from Apple
Pugetsound Program Library Exchange.

Entire contents Copyright (c) 1981 by Apple Pugetsound Program Library
Exchange, a Washington State non-profit Corporation. All rights reserved.

BIG MAC
TABLE OF CONTENTS

Section I Quick Reference Command/Summary
Section 11 Overview

A. Assembly Language Whys and Wherefores
B. Background and Features
C. Suggested Reading

Section 111 BIG MAC
A. EXEC Mode
B. The Editor

1. Command Mode
2. Add/Insert Mode
3. Edit Mode

C. The Assem bier
1. Number Format
2. Source Code Format
3. . Expressions
4. Immediate Data
5. Addressing Modes

a. 6502 Opcodes
b. Sweet 16 Opcodes
c. Pseudo Opcodes

i. directives
ii. format
iii. string
iv. data, allocation
v. conditionals
vi. macros

6. Variables
D. Macros

1. Defining a Macro
2. Special Variables
3. Sample Program

E. Symbol Table
F. Technical Information

1. Important Addresses
2. Memory Map
3. In Case of a Crash
4. Using TED 11 Source Files

G. Error Messages
H. Language Card Version

2

4
6
6
7
8
9
9

11
11
15
16
17
17
18
18
19
20
20
20
21
21
21
23
24
25
26
26
27
27
18
29
30
30
30
31
32
32
33
33

Section IV Other Programs 34
A. Sourceror 34

1. Introduction 34
2. Using Sourceror 34
3. Disassembly Commands 35
4. Housekeeping Commands 37
5. Final Processing 38
6. Dealing with the Finished Source 38
7. The Memory Full Message 39

B. Hello and Greetings 39
c. The Text File Companions 39

1. Introduction 39
2. Reader 40

/

3. Writer 40
D. The Macro Library 41
E. Autostart ROM Supplement 41
F. Sweet 16 42

1. Introduction 42
2. Sweet 16: A Pseudo 16 Bit Microprocessor 47

a. Description 47
b. Instruction Descriptions 48
c. Sweet 16 Opcode Summary 48
d. Register Instructions 49
e. Non-Register Instructions 55
f. Theory of Operation 58
g. When is an RTS Really a JSR? 58
h. Opcode Subroutines 59
i. Memory Allocation 59
j . User Modifications 59

G. Utilities 60
1. The Mini-Assembler 60
2. Floating Point Routines 60
3. Multiply/Divide Routines 60
4. PR DEC 60
5. MSG OUT 60
6. UPCON 60
7. FIX 60

H. Game Paddle Printer Driver 61
Section V A Beginner's Guide tci Big Mac 62

A. Introduction 62
B. Input 62
c. System and Entry Commands 65
D. Assembly 67
E. Saving and Running Programs 68

Section VI Glossary 70
Section VII Credits 72

3

SECTION I QUICK REFERENCE COMMAND SUMMARY

Command

C: CATALOG
L: LOAD
R : READ
S: SAVE
W: WRITE
A: APPEND
D: DRIVE
E: EDIT
Z : ZERO TABS
0 : OBJ SAVE
Q: QUIT

Hlmem:
NEW
PR#
USER
TABS
LENgth
Where
MONitor
TRuncON
TRuncOF
STRIP
Quit
SYM
ASM
Delete
Replace
List
Print
I
Find
Change
COPY
MOVE
Edit

Add
Insert
Ctrl L
Ctrl 0
Ctrl X

Ctrl I
Ctrl 0
Ctrl D
Ctrl F
Ctrl B
Ctrl N
Ctrl L
Ctrl R
Ctrl C
Ctrl Q
[return]

Description
EXEC MODE

Display catalog and allow DOS commands
Load a source f ile from disk
Read a text file from disk
Save a source file to disk
Write a text file to disk
Load a source file at end of file in memory
Toggle from drive 1 to drive 2
Enter edit/asm mode
Enter edit/asm mode with tabs set to 0
Save object code after successful assembly
Exit to BASIC

EDITOR
Command Motte

Sets upper limit for source file
Deletes present source, resets Himem:
Same function as BASIC PR#
Executes user routine at $3F5
Sets tab stops for editor listing
Returns number of bytes in source file
Returns memory address of specified line number
Exits to monitor. Return with Ctrl Y
Omits comments prefixed" ;" &ASCII, HEX obj code
Reset truncate flag to default
Strip comments prefixed "*"or " ;"from source
Exit to EXEC mode
Establishes user symbol table area
Commences assembly
Delete line number, range, or range list
As above, then falls into Insert mode
List source file with line numbers
List source without line numbers
Continue List from last line number
Find d-string specified
Replace d-string1 with d-stnng 2
Copy line number range to above specified line
As above, but deletes original lines
Edit line number or range specified

Add/insert mode
Enter text entry mode
Enter text entry mode just above specified line
Case toggle : select opposite case
Enter non-keyboard characters
Exit text entry mode

Edit mode
Insert characteds)
Insert Control character
Delete characteds)
Find next occurrence of character after Ctrl F
Place cursor at beginning of line
Place cursor at end of line
Change case of character under cursor
Restore line to original form
Exit Edit mode
Enter line up to cursor position
Enter entire line as it appears

4

Page

9
9

LC
9

LC
9

10
10
10
10
10

11
11
11
11
12
12
12
12
12
12
LC
12
LC
13
13
13
13
13
14
14
14
14
14
14

15
15
15
LC
15

16
16
16
16
16
16
16
16
16
16
16

Command Description Page
ASSEMBLER EXPRESSIONS

+ Add 18
Subtract 18
Multiply 18
Divide 18
Exclusive or 18
Or 18

& And 18
Decimal data 18

$ Hexadecimal data 18
% Binary data 18
Immediate mode (low byte of expression} 19
H< Low byte of expression 19
fol> High byte of expression 19
#I Optional syntax for above 19

ASSEMBLER PSEUDO-OPS
Directives

EOU Equate label to address or data 21
Alternate syntax for equate 21

VAR Equate special variables (] } LC
ORG Establish run address 21
OBJ Establish alternate assembly storage address 21
SAV Saves object code to this point. LC
PUT Insert file during_assembly LC
CHK Places obj. code checksum in source LC
END Signifies end of source to be assembled 21

LSTON
Formatting

Sends assembly to screen or other output 22
LST OFF Turns off output during assembly 22
EXP ON Prints all code during assembly 22
EXP OFF Omits printing macro object code during assembly 22
TR ON Prints maximum of 3 object bytes during assembly LC
TR OFF Resets truncate flag to deafult LC
PAU Second pass assembly waits for key press 22
PAG Outputs a form feed to printer 22
AST Outputs n asterisks to assembly listing 22
SKP Outputs n carriage returns to assembly listing 22

String
ASC Enter a delimited ASCII string into object code 23
DC I As above, but with hi bit of last chr set opposite 23
INV Enter a delimited string as inverse 23
FLS Enter a delimited string as flashing 23

Data and Allocation
DA Enter two byte value, low byte first 24
DOB As above, but high byte first 24
DFB Enter multiple bytes of data, delimited by comma 24
HEX As above, comma not required, hex data only 24
OS Reserve n bytes of space 24

Conditionals
DO If 0, discontinue assembling code 25
ELSE Invert the previous assembly condition set by DO 25
FIN Cancel the last DO 25

Macros
MAC Start of macro definition 26
EOM End of macro definition 26
<<< Alternate syntax for above 26
PMC Assemble macro at present location 26
>>> Alternate syntax for above 26

LC = Command available on Language Card version only.

5

SECTION II - OVERVIEW

A.ASSEMBLY LANGUAGE WHYS AND WHEREFORES

Some of you may ask "What is Assembly Language?" or "Why do I need
to use Assembly Language; BASIC suits me fine". While we do not have the
space here to do a treatise on the subject, we will attempt to briefly answer
the above questions.

Computer languages are often referred to as "high level" or "low level"
languages. BASIC, COBAL, FORTRAN and PASCAL are all high level lang­
uages. A high level language is one that usually uses English-like words (com­
mands) and may go through several stages of interpretation or compilation
before finally being placed in memory. The time this processing takes is the
reason BASIC and other high level languages run far slower than an equi­
valent Assembly Language program. In addition, it normally consumes a
great deal more available memory.

From the ground up, your computer understands only two things, off and
on. All of i-ts calculations are handled as addition or subtraction, but at tre­
mendously high speeds. The only number system it comprehends is Base 2
(the Binary System) where a "1" is represented by 00000001 and a "2" is
represented by 00000010.

The 6502 microprocessor has five 8-bit registers and one 16-bit register
.in the ALU (Arithmetic Logic Unit). All data is ultimately handled through
these registers. Even this lowest of low-level code requires a program to func­
tion correctly. This program is hard wired within the 6502 itself. The micro­
processor program functions in three cycles. It fetches an instruction from
RAM memory in the computer, decodes it and executes it.

These instructions exist in RAM memory as one, two or three byte groups.
(A byte contains 8 binary bits of data and is usually notated in hexadecimal
(Base 16) form.) Some early microcomputers allowed data entry only
through 16 6 front panel switches, each of which, when set on or off, would
combine in hex. This requires an additional program in the computer to break
the byte down into its respective 8 bits so that 6502 may interpret it.

At the next level up (requiring still more programming), the user may
enter his/her data in the form of a three character "mnemonic", a type of
code whose characters form an association with the microprocessor operation,
e.g., LDA stands for "LoaD the Accumulator". The standard Apple 11 has a
built-in mini-assembler that permits simple Assembly Language programming.

But even this is not sufficient to create a long and comprehensive program.
In addition to the use of a three character mnemonic, a full fledged assembler
allows the programmer to use "labels", which represent an as yet undefined
area of memory where a particular segment of the program will be stored.
In addition, an assembler will have a provision for line numbers, similar to
those in a BASIC program, which in turn permits the programmer to insert
lines into the program and perform other editing operations. And this is
what BIG MAC is all about.

* Two 8-Bit registers functioning as a 16-bit register.

6

Finally, a high level language such as BASIC is itself an assembly program
which takes a command such as PR I NT and reduces it (tokenizes it) to a
single hex byte before storing it in memory.

Before using this or any other assembler, the user is expected to be some­
what familiar with the 6502 architecture, modes of addressing, etc. This
manual is not intended to teach Assembly Language programming. Many
good books on 6502 Assembly programming are available at your local
dealer; some are referenced here.

B. BACKGROUND AND FEATURES

BIG MAC is a "Ted-based" editor-assembler. This means that while it is
essentially new from the ground up, it adheres to and follows almost all of
the conventions associated with the earlier TED 11+, in terms of the command
mnemonics, pseudo-ops, etc.

The original TED ASM was written by Randy Wiggington and Gary
Shannon. It has been widely distributed "under the counter" by user groups
and individuals, under many names, and in a variety of versions. Seemingly,
each person added his own enhancements and improvements. BIG MAC
is no exception. Representing a major step forward, with the addition of mac­
ro capability, MAC appears on the scene now as one of the most advanced
and sophisticated editor-assemblers for the Apple 11 , yet retains all of the easy
-to-use features of TED that make it desirable to a beginner in assembly
language programming.

Significant changes incorporated in BIG MAC, in addition to macros,
include the use of the logical operators AND, OR, and EOR, and the math
operator for division, the ability to list with or without line numbers, and
substantially faster editing. Similarly, the edit module now includes many
additional commands to facilitate editing, and the companion program
READER allows any Apple text file to be read into the edit buffer, thus
permitting the use of source files from other assemblers, such as the DOS
Tool Kit.

BIG MAC is an editor/assembler which is upwards compatible with TED
II +(except for a couple of rarely used opcodes). It has MACRO capability,
conditional assembly, and a number of other features missing in TED 11 +.
The names (but not the code) for some of the additional features were bor­
rowed from the Apple assembler and other assemblers to enhance compati­
bility. This assembler was originally based on a version of TED 11 +, but has
been virtually entirely rewritten. The most obvious differences that a user of
TED 11+ will not ice are the text formatting in edit mode, the speed of the
editor (over 20 times faster), and the absence of numerous bugs.

7

BIG MAC is a coresident assembler, which means that it must contain
the source code in memory while assembling. This has several advantages
over a disk based assembler, and many people, including the present author,
greatly prefer it. However, it has the disadvantage that there is a certain
maximum source file size that can be handled in one piece, although this is,
in fact, rather large. Every effort has been made to maximize the space avail ­
able to BIG MAC, and it is suggested that you do likewise by not tying up
memory with such utilities ·as the Program Line Editor when using BIG
MAC. Such facilities are very nice in their place, but get in the way of a good
assembler or text editor.

BIG MAC assumes that your system has 48K memory and operates on
either 3.2 or 3.3 DOS. BEWARE of "custom" DOS's. BIG MAC does an auto­
matic MAXF I LES 1 upon entry, then reverts to the usual value on exit.

C. SUGGESTED READING

System Monitor

Apple 11 Mini-Assembler
Synertek Programming Man.
Programming the 6502
The Apple Monitors Peeled
A Hex on Thee

Floating Point Package
Floating Point Linkage

Routines

Apple 11 Reference
Manual

Apple Computer, Inc. Peeking at Call-Apple,
Vol I

Apple Computer, Inc. Peeking at Call-Apple,

Rodnay Zaks
Wm . E. Dougherty
Val J. Golding

Synertek 6500-20
Sybex C-202
Apple Computer, Inc.
Peeking at Call - Apple,
Vol. 11

Apple Computer, Inc. The Wozpak 11

Don Williams

Apple Computer, Inc.

Peeking at Call-Apple,
Vol I

ASSEMBLY LINES - by Roger Wagner
A continuing series of tutorial articles in SOFTALK magazine. The collec­

ted series through Volume 1 will be published separately in the near future .
An excellent introduction, easy-to-follow for the beginning assembly language
programmer.

CONVERTING BRAND XTO BRAND Y - by Randall Hyde
Apple Orchard, Volume 1, No. 1, March/April 80. Useful notes and cross­

references on converting among assemblers.

CONVERTING INTEGER BASIC PROGRAMS TO ASSEMBLY LANGUAGE
by Rand all Hyde

Apple Orchard, as above.

HOW TO ENTER CALL - APPLE ASSEMBLY LANGUAGE LISTINGS
Call -APPLE, Volume IV, No. 1, J anuary 81 .

MACHINE TOOLS
Call -APPLE in Depth, No 1.

8

SECTION 111 BIG MAC

A. EXEC MODE

C:CATALOG
After showing the catalog, this command accepts any disk command
you wish to give, using standard DOS syntax. Unlike the Load, Ap­
pend and Save commands, you must type the .S suffix for a source
file. This facility is provided primarily for locking and unlocking
files. Do not use it to load or save files. If you do not want to give a
disk command, just hit return. To cancel a partially typed command
use control X or make sure the command is in the wrong syntax (type
some commas) or just backspace to the beginning.

L: LOAD
This is used to load a source file from disk. You will be asked for the
name of the file. You should not append a .S, since BIG MAC does
this automatically. If you have hit L by mistake, just hit < RTN>
twice and the command will be cancelled without affecting any file
that may be in memory. After a load(or append) command., you are
automatically placed in editor mode, just as if you hit E. The source
will automatically be loaded to the correct address. Subsequent
LOAD or SAVE commands will display the last used file name., Fol ­
lowed by a flashing"?". If you hit the "Y" key, the current file name
will be used for the command. If you hit any other key (e.g., [RE­
TURN],), the cursor will be placed on the first character of the file
name, and you may type in the desired name. [RETURN] alone at
this time will cancel the command.

S: SAVE
Use this to save a source file to disk. As in the load command, you do
not specify the suffix .S, and you can hit <RTN> to cancel the com­
mand. Note that the address and length of the source file are shown
on the MENU. These are for information only. You should not use
these for saving; the assembler remembers them better than you can,
and sends them to DOS automatically. As in the LOAD command
above, the file name will be displayed and you may type "Y " to
SA VE the same file name, or any key for a new file name.

A: APPEND
This loads in a specified source file and places it at the end of the fil e
currently in memory. It operates in the same way as the load com­
mand, and does not affect the default file name. It does not save the
appended file; you are free to do that if you wish,

9

D: DRIVE
When you hit D, the drive used for saving and loading changes from 1
to 2 or 2 to 1. The currently specified drive is shown on the menu.
When BIG MAC is first BRUN, the specified drive will be the one used
for the BRUN. There is no command to specify slot number, but this
can be accomplished by typing C for catalog, then giving the disk
command CATALOG, Sn, where n is the slot number.

E: EDITOR
This command places you in the editor/assembler mode. It automati­
cally sets the default tabs for the editor to those appropriate for
source files.

Z: ZERO TABS
This is the same as the E command but sets all tabs to zero. Th,is is
appropriate for text files that are not source files. This is just a conve­
nience, and the same thing can be accomplished in editor mode by
typing TABS <RTN>.

0: SAVE OBJECT CODE
You are permitted to use this command only after the successful
assembly of a source file. In this case you will see the address and
length of the object code on the menu. As whh the source address,
this is given for information only. Note that the bbject address shown
is that of the program's ORG {or $8000 by default) and not that of
the actual current location of the assembled code {which is $8000 or
whatever OBJ you have used). When you use this command, you are
asked for a name for the object file. Unlike the source file case, no
suffix will be appended to this name. Thus you can safely use the
same name as that of the source file {without the .S of course). When
this object code is saved to the disk. its address will be the correct
one, the one shown on the menu. When, later, you BLOAD it or
BRUN it, it will go to that address, which can be anything ($300,
$800, etc.) Thus there is usually no need to use an OBJ in the source
code, unless the object code will be too long for the space available
at $8000 and above.

O : OUIT
This exits to BASIC. It also sets up a reentry jump address so that you
can enter BIG MAC again by typing CALL 6. This reentry will be a
warm start, that is, it will not destroy the source file currently in
memory. This exit can be used to give disk commands, if that is more
convenient than the one provided by C.

10

B. THE EDITOR

1. Command Mode

Basically there are three modes in the editor: the command mode, the add
or insert mode, and the edit mode. The main one is the command mode,
which has a colon : as prompt.

For many of the command mode commands, only the first letter of the
command is required, the rest being optional. We show the required com­
mand characters in upper case and the optional ones in italicized lower case.
In some commands, you must specify a line number, a range or a range list.
A line number is just a number,. A range is a pair of line numbers separated
by a comma. A range list consists of several ranges separated by slashes, /.

Several commands allow specification of a string. The string must be
"delimited" by a non-numeric character other than the slash, /. Such a de­
limited string is called a d-string. The usual delimiter is single or double
quote marks, ', ".

Line numbers in the editor are provided automatically. You never type
them when entering text; only when giving commands. If a line number in
a range exceeds the number of the last line, it is automatically adjusted to the
last line number. The commands are:

Hlmem: (decimal number between 9472=$2500 and 39584=$9AAO)

NEW

This command is rarely needed. It sets the upper limit for the source
file and the symbol table produced by the assembler. Its main purpose
is to protect the object file area from being used by the symbol table
during assembly. (Actually, the symbol table would be destroyed by
the object file.) Himem defaults to $8000, and so does not have to
be set unless you use a non-default object address. You are not per­
mitted to specify a Himem below $2500, (inside BIG MAC) or above
$9AAO.

Deletes present source file, resets Himem to $8000 and starts fresh.

PR# (0-7)

USER

Same function as in BASIC. Mainly used for sending an editor or as­
sembly listing to a printer.

This does a JSR $3F5. (That is the Applesoft ampersand vector loca­
tion, which normally points to an RTS.) The designed purpose of this
command is for the connection of user defined printer drivers. (You
must be careful that your printer driver does not use zero page addresses,
except the 1/0 pointers, because this will likely interfere with BIG
MAC's heavy zero page usage.)

11

TABS number ,number, .. .
TABS number ,number, ... ,"tab character"

This sets the tabs for the editor, and has no effect on the assembler
listing. Up to 9 tabs are possible, but they cannot exceed 39 in value.
The default tab character is a space, but any may be specified. The
assembler regards the space as the only acceptable tab character for
the separation of labels, opcodes, and operands. If you don't specify
the tab character, then the last one used remains. Entering TABS
and a carriage return will set all tabs to zero.

LENgth
This gives the length in bytes of the source file, and the number of
bytes remaining before Himem (usually $8000 - not BASIC Himem).

Where (line number)
This prints in hex, the location in memory of the start of the speci­
fied line. "Where O" for "WO") will give the location of the end of
source.

MONitor
This exits to the monitor. It sets up return :addresses at 0, 6, and at
the control Y vector ($3F8). Thus you may reenter by either 6G,
OG or control Y. These reestablish the important zero page pointers
from a save area inside BIG MAC itself. Thus control Y will give a
correct entry, even if you have messed up the zero page pointers
while in the monitor. DOS is not connected when using this entry to
the monitor. This facility is designed for experienced Apple program­
mers, and is not recommended to beginners. Should you accidentally
exit to BASIC with a Ctrl C, don't panic; BIG MAC is very forgiving.
Just hit RESET. With the old monitor ROM, you can then type 6G
to return to BIG MAC. With the Autostart ROM, RESET will recon­
nect DOS, and you can then type I NT or FP, corresponding to which­
ever BASIC you are in, then type CALL 6 to return to BIG MAC.

TRuncON
This sets a flag which, during LIST or PRINT, will terminate printing
of a line upon finding a space followed by a semicolon. It makes
reading of source files easier on the Apple 40 column screen.

TRuncOFF

Quit

This returns to the default condition of the truncation flag. (This also
happens automatically upon entry to the editor from the exec mode
or from the assembler.)

Exits to exec mode.

12

ASM
This passes control to the assembler, which attempts to assemble the
source file. First, however, you are asked if you wish to "update the
source". This is to remind you to change the date or identification
number in your source file. If you answer "N" then the assembly will
proceed. If you answer "Y" then you will be presented with the first
line in the source which contains a "/"and are placed in edit mode.
When you are done editing this line and hit return, assembly will
begin. If you use the control C edit abort command, however, you
will return to the editor command mode, and any 1/0 hooks you have
established, by PR# etc., will have been disconnected. This will also
happen if there is no line with a "/".

Note that by establishing a comment line with "*/"at the beginning,
you have a nearly automatic method of keeping track of multiple ver­
sions of a program.

Delete (line number)
Delete (range)
Delete (range list)

This deletes the specified lines. Since, unlike BASIC, the line numbers
are fictitious, they change with any insertion or deletion. Thus you
must specify the higher range first!

Replace (line number)
Replace (range)

List

This deletes the line number or range, then places you into insert
mode at that location.

List (line number)
List (range)
List (range list)

Print

Lists the source file with added line numbers. Control characters in
source are shown in inverse, unless the listing is being sent to a printer
or other nonstandard outport. The listing can be aborted by control
C or with key "/". You may stop the listing by hitting the space bar
and then advance a line at a time by hitting the space bar again. Any
other key will restart it.

Print (line number)
Print (range)
Print (range list)

This is the same as "List" except that line numbers are not added.

I
I (line number)

This continues listing from the last line number listed, or, when a
line number is specified, from that line. This listing continues to the
end of the file or until it is stopped as in List.

13

Find (d-string)
Find (range) (d-string)
Find (range list) (d-string)

This lists those lines containing the specified string. It may be aborted
with control C or key "/".Since the control L case toggle works in
command mode, you can use it to find or change strings with lower
case characters.

Change (d-string:d-string)
Change (range) (d-string:d-string)
Change (range list) (d-string:d-string)

This changes occurrences of the first d-string to the second d-string.
The d-strings must have the same delimiter with the adjoining ones
coalescing. For example, to change occurrences of 'speling" to "spel­
ling" throughout the range 10, 100, you would type C20, 100"speling"
spelling". If no range is specified, the entire source file is used. Before
the change operation begins, you are asked whether you want to
change "all" or "some". If you select "some" by hitting the "S"
key, the editor stops whenever the first string is found and displays
the line as it would appear with the change. If you then hit <ES­
CAPE> or any control character, the change displayed will not be
made. Any other key, such as the space bar, will accept the change.
Control C or key "/"will abort the change process.

COPY (range) TO (line number)
COPY (line number) TO (line number)

This copies the range to just above the specified line number. It does
not delete anything.

MOVE (range) TO (line number)
MOVE (line number) TO (line number)

This is the same as COPY but, after copying, automatically deletes
the original range. You always end up with the same lines as before,
but in a different order.

Edit
Edit (line number)
Edit (range)
Edit (range list)
Edit (d-string)
Edit (line number) (d-string)
Edit (range) (d-string)
Edit (range list) (d-string)

This presents the range, etc., line by line to be edited and puts you
into edit mode. If a d-string is appended, then only those lines con­
taining the d-string are presented.

For the commands involving ad-string, the character " 11 " acts as a "WILD
CARD". Thus' "Jon"s" will find both "Jones" and "Jonas".

14

2. Add/losert Mode

Add
This places you into the "Add" mode. This acts much like entering
BASIC lines with auto line numbering. However, you may enter lower
case text (useful for comments if you have a lower case adapter)
by typing control L. This acts as a case toggle, so another control L
returns you to upper case mode. (Note that the control L functions
differently in EDIT mode; see pg. 16. Also, the exit from "Add"
mode is to just hit RETURN as the FIRST character of a line. You
may enter an EMPTY line by typing a space and then RETURN.
(This will not enter the space into text, it only bypasses the exit.
The editor automatically removes extra spaces at the end of lines.)
You may also exit the "Add" mode by control X, whichthencancels
the current line.

Insert (line number)

Ctrl L

Ctrl X

This allows you to enter text just above the specified line. Otherwise,
it functions the same as "Add" mode.

Toggles the current case. If you are in upper case, Ctrl L will place
you in lower, and vice versa. Upper case is defaulted to when entering
each new line.

Cancels the current line being entered and returns to EDIT Control
Mode.

15

3. Edit Mode

After typing E in the editor, you are placed in edit mode. The first line of
the range you have specified is placed on the screen with the cursor on its
first character. The line is tabbed as it is in listing, and the cursor will jump
across the tabs as you move it with the arrow keys. vlihen you are through
editing, hit return. The line will be accepted as it appears on the screen, no
matter where the cursor is when you hit return. The edit commands and
functions are very similar, but not identical, to those in Neil Konzen 's Pro­
gram Line Editor.

The edit mode commands are:

Control I
Begins insertion of characters. This is terminated by any control
character, such as the arrows or return.

Control D
[j>eletes the character under the cursor.

Control IF
Finds the next occurrence of the character typed after the control F.

Control L
Changes the case of the character under the cursor.

Control 0
Functions as Control I, except inserts any control character (inclu­
ding the command characters such as control 0) .

Control R
Returns the line to its original form.

Control 0
Deletes all characters from the cursor on and completes the edit of
that line.

Control C
Aborts edit mode and returns to the editor's warm start. The current
line being edited will retain its original form.

Control B
Places the cursor at the beginning of the line.

Control N
Places the cursor one space to the right of the end of the line.

[Return]
Accepts the line as it appears on the screen and fetches the next line
to be edited, or goes to the warm start if the specified range has been
completed.

The editor automatically replaces spaces in comments and ASCII strings
with inverse spaces. When listing, it converts them back, so you never notice
this. The reason for this is to avoid inappropriate tabbing of comments and
ASCII strings. In the case of ASCII strings, this is only done when the delimi­
ter is a quote or a single quote. You can, however, accomplish the same thing
by editing the line, replacing the first delimiter with a quote, hitting return,
and then editing again and changing the delimiter back to the desired one.

16

C. THE ASSEMBLER

This documentation will not attempt to teach you assembly language. It
will only explain the syntax you are expected to use in your source files, and
to document the features that are available to you in the assembler.

1. Number Format

This assembler accepts decimal, hexadecimal, and binary numerical data.
Hex numbers must be preceded by "$" and binary numbers must be prece­
ded by "%",thus the following three instructions are all equivalent:

LOA #$100 LDA#$64 LOA #%1100100 LOA #%01100100

(As indicated, leading zeros are ignored.) The "#"here stands for "number"
or "data", and the effect of these instructions is to load the accumulator with
the number (decimal) 100.

A number not preceded by "#"is interpreted as an address. Thus

LOA 1000 LOA $3E8 LOA %1111101000

are equivalent ways of loading the accumulator with the byte that resides in
memory location $3E8.

Use the number format that is appropriate for clarity. For example, the
data table

DA $1
DA $A
DA $64
DA $3E8
DA $2710

is a goocll deal more mysterious than its decimal equivalent:

DA 1
DA 10
DA 100
DA 1000
DA 10000

17

2. Source Code Format

A line of source code typically looks like :

LABEL OPCODE OPERAND ;COMMENT

A line containing only a comment must begin with a "*". The assembler
will accept an empty line in the source code and will treat it just as a SKP
1 instruction (see the section on pseudo opcodes), except the line number
will be printed.

The number of spaces separating the fields is not important, except for
the editor's listing, which expects just one space.

The maximum allowable LABEL length is 13 characters, but more than 8
will pro_duce messy assembly listings. A label must begin with a character at
least as large, in ASCII value, as the colon, and may not contain any charac­
ters less, in ASCII value, than the number zero.

The assembler examines only the first 3 characters of the OPCODE (with
the Sweet 16 opcode POPD as the only exception) so, for example, you can
use PAGE instead of PAG. (Because of the one exception, the fourth letter
should not be a D, however.) The assembler listing will truncate the opcode
to 7 letters and will not look well with one longer than 4 unless there is no
operand.

The maximum allowable combined OPERAND+COMMENT length is 64
characters. You will get an error if you use more than this. A comment line
by itself is also limited to 64 characters.

3. Expressions

To make clear the syntax accepted and/or required by the assembler, we
must define what is meant by an "expression". Expressions are built up from
"primitive expressions" by use of arithmetic and logical operations. The pri­
mitive expressions are:

1. A label
2. Adecimal number
3. A hexadecimal number (preceded by "$")
4. A binary number (preceded by "%")
5. Any ASCII character preceded, or enclosed, by quotes or single quotes
6. The character * (standing for the present address)

All number formats accept 16 bit data and leading zeros are never required.
In case 5 the "value" of the primitive expression is just the ASCII value of
the character. The high bit will be on if a quote("] is used, and off if a single
quote ['] is used.

The assembler supports the four arithmetic operations: +, -, /, and *
It also supports the three logical operations :

Exclusive OR . = OR & AND

18

Thus some examples of legal expressions are:

LABEL 1-LABEL2
2* LABEL+$231
1234+% 10111
"K" -" A"+1
"O" ! LABEL
LABEL&$7F
*-2
LABEL.%10000000

Parentheses have another meaning and are not allowed in expressions.
All arithmetic and logical operations are done from left to right. (Thus
2+3*5 would assemble as 25 and not 17.)

4. Immediate Data

For those opcodes such as LDA, CMP, etc., which accept immediate data
(numbers as distinct from addresses) the immediate mode is signalled by pre­
ceding the expression by"#". An example is: LDX #3. In addition:

#<expression
#>expression

#expression

#/expression

produces the low byte of the expression
produces the high byte of the expression

also gives the low byte (the 6502 does not accept 2-byte
DATA)
is optional syntax for the high byte of the expression

The ability of the assembler to evaluate expressions such as LAB 1-LAB2
-1 is very useful for the following type of code :

COMPARE LDX #FOUND-DA TA-1
LOOP CMP DATA,X

BEO FOUND
DEX
BPL LOOP
JMP REJECT ;not found

DATA HEX E3BC3498
FOUND RTS

With this type of code, if you add or delete some of the "DATA", then
the appropriate X-index for the comparison loop is automatically adjusted.

19

5. Addressing_ Modes

a. 6502 OPCODES
The assembler accepts, of course, all the 6502 opcodes with standard

mnemonics. It also accepts BLT (branch if less than) as an equivalent to
BCC, and BGE (branch if greater.or equal) as an equivalent to BCS.

There are 12 addressing modes on the 6502. The appropriate syntax for
these, in BIG MAC are:

Addressing mode

Implied
Accumulator
Immediate (data)

Zero page (address)
Indexed X
Indexed Y

Absolute (address)
Indexed X
Indexed Y

Indirect
Preindexed X
Posti ndexed Y

Syntax

OPCODE
OPCODE
OPCODE #expr

OPCODE expr
OPCODE expr,X
OPCODE expr,Y
OPCODE expr
OPCODE expr,X
OPCODE expr,Y
JMP (expr)
OPCODE(expr,X)
OPCODE(expr),Y

Examples

CLC
ROR
ADC#$F8
CMP#"M"
LDX#>LABEL1-LABEL2-1
ROL6
LDA $EO,X
STX LAB,Y
BIT $300
STA $4000,X
SBC LABEL-1,Y
JMP ($3F2)
LDA (6,X)
STA($FE).Y

Note that there is no difference in syntax for zero page and absolute
modes. The assembler automatically uses zero page mode when appropriate.
In the indexed, indirect modes, only a zero page expression is allowed, and
the assembler will give an error message if the "expr" does not evaluate to a
zero page address.

Note also that the "accumulator mode" does not require (or accept)
an operand. Some assemblers perversely require you to put an "A" in the
operand for this mode.

The assembler will decide the legality of the addressing mode for any
given opcode.

b. SWEET 16 OPCODES

The assembler also accepts all Sweet 16 opcodes with the standard mne­
monics. The usual Sweet 16 registers RO to R 15 do not have to be "equated"
and the "R" is optional. TED II+ users will be glad to know that the S.ET
opcode works as it should, with numbers or labels. For the SET opcode,
either a space or a comma may be used between the register and the data
part of the operands; that is, SET R3,LABEL is equivalent to SET R3 LA­
BEL. It should be noted that the NUL opcode is assembled as a one-byte
opcode (the same as HEX OD) and not a two byte skip as this would be
interpreted by ROM Sweet 16. This is intentional, and is .done for internal
reasons.

20

c. PSEUDO OPCODES

1. directives

EQU expression (EQUals)
(optional syntax) expression

Used to define the value of a LABEL, usually an exterior address or
an often used constant for which a meaningful name is desired. It is
recommended that these all be located at the beginning of the pro·
gram. The assembler will not permit an "equate" to a zero page num­
ber after the label equated has been used, since bad code could re­
sult from such a situation. (Also see "Variables".)

ORG expression (ORiGin)

Establishes the address at which the program is designed to run . It
defaults to $8000. Ordinarily there will be only one ORG and it will
be at the start of the program . Otherwise the exec mode's "object
code save" command will not function.

OBJ expression (OBJect)

END

Establishes the address at which the object code will be placed during
assembly. It defaults to $8000. There is rarely any need to use this
pseudo-op and inexperienced programmers are urged not to use it.
You must not set it to an address conflicting with MAC (which in­
cludes alt memory up to the end of the eventual symbol table) .

This rarely used or needed pseudo opcode instructs the assembler to
ignore the rest of the source. Labels occurring after END will not be
recognized.

2 1

ii. formatting

LST ON or OFF (LiST)

This controls whether the assembly listing is to be sent to the Apple
screen and/or other output device. You may, for example, use this to
send only a portion of the assembly listing to your printer. Any num­
ber of LST instructions may be in the source. If the LST condition is
OFF at the end of assembly, then the symbol table will not be printed.
The assembler actually only checks the third character of the operand
to see whether or not it is a space. Thus, LST ERIN E will have the
same effect as LST OFF. The LST directive will have no effect on the
actual generation of object code. If the LST condition is OFF, then
the object code will be generated much faster, but this is recom­
mended only for debugged programs.

EXP ON or OFF (EXPand)

PAU

PAG

EXP ON will print an entire macro during the assembly. The OFF
condition will print only the PMC pseudo-op. EXP defaults to ON.

(PAUse)

On the second pass this causes assembly to pause until a key is hit.
(This can also be done from the keyboard by hitting the space bar.)

(PAGe)

This sends a formfeed ($8C) to the printer. It has no effect on the
screen listing.

AST expression (ASTerisks)

This sends Asterisks to the listing, the same number as the value of
the operand. The number format is the usual one, so that AST 10 will
send (decimal) 10 asterisks, for example. The number is treated mo­
dulo 256 with O being 256 asterisks! This differs from TED 11+,
which recognizes the operand as a hex expression, thus will need to
be converted.

SKP expression (SKiP)

This sends OPERAND number of carriage returns to the listing. The
number format is the same as in AST.

22

iii. strings

ASC d-string (ASCii)

This puts a delimited ASCII string into the object code. The only
restriction on the delimiter is that it does not occur in the string
itself. Different delimiters have different effects. Any delimiter less
than (in ASCII code) the single quote ['] will produce a string with
the high bits on, otherwise the high bits will be off. Thus, for exam­
ple, the delimiters !"#$%&will produce a string in "negative" ASCII,
and the delimiters'()*+/ will produce one in "positive" ASCII. Usu­
ally the quote and single quote are the delimiters of choice, but other
delimiters provide the means of inserting a string containing the
quote or single quote as part of the string.

DCI d-string (Dextral Character Inverted)

This is the same as ASC except that the string is put into memory
with the last character having the opposite high bit to the others.

INV d-string (INVerse)

This puts a delimited string in memory in inverse format. All choices
of delimiter have the same effect.

FLS d-string (FLaSh)

This puts a delimited string in memory in flashing format. All choices
of delimiter have the same effect.

23

iv. data and allocation

DA expression (Define Address)

This stores the (two byte) value of the operand, usually an address,
in the object code, low byte first. DA $FDFO will generate FO FD .

DDB Define Double Byte

As above, but places high byte first.

olfa expression (DeFine Bytes)

This puts the bytes specified by the operand into the object code. It
accepts several bytes of data, which must be separated by commas
and contain no spaces. The standard number format is used and
arithmetic is done as usual. The " fl" symbol is acceptable but ignored,
as is "<". The ">" symbol m ay be used to specify the high byte of
a label, otherwise the low byte is always taken. The "> " symbol
should appear on ly as the first character of an expression or immedi­
ately after fl. That is, the instruction DFB > LAB 1- LAB2 wi ll pro­
duce the high byte of the val ue of LAB1 - LAB2. For example .

DFB $34, 100,LAB1-LAB2,% 1011,>LAB1 - LAB2 ..
is a properly formatted DFB statement which will generate the object
code (hex) 34 64 DE OB 09, assuming that LAB1 =$81A2 and
LAB2=$77C4.

HEX hex data

This is an alternative to DF B which allows convenient insertion of
hex data. Unlike all other cases, the "$" is not required or accepted
here. The operand should consist of hex numbers each having two
hex digits (e.g., OF, not F). They may be separated by commas or
may be adjacent. An error message wi ll be generated if the operand
contains an odd number of digits or ends in a comma or, as in al l
cases, contains more than 64 characters.

OS express ion (Define Storage)

This d oes not generate any code, but simply adjusts the object code
pointer so that an area equal to the value of the operand is reserved .

24

v. conditionals

DO expression

ELSE

FIN

This, together with ELSE and FIN are the conditional assembly
pseudo-ops. If the operand evaluates to ZERO, then the assembler
will stop generating object code (until it sees another conditional) .
Except for macro names, it will not recognize any labels in such an
area of code. If the operand evaluates to a nonzero number then
assembly will proceed as usual. This is very useful for macros. It is
also useful for sources designed to generate slightly different code for
different situations. For example, if you are design ing a program to
to go on a ROM chip, then you would want one version for the ROM
and another, with small differences, to create a RAM version for
debugging purposes. Similarly, in a program with text, you may wish
to have one version for Apples with lower case adapters and one
for those without. By using conditional assembly, modification of
such programs becomes much ·simpler, since you do not have to make
the modification in two separate versions of the source code. Every
DO should be terminated somewhere later by a FIN and each FIN
should be preceded by a DO. An ELS!= should occur only inside
such a DO,FIN structure. DO,FIN structures may be nested up to
8 deep (possibly with some ELSEs between). If some DO condition
is off (value 0) , then assembly will not resume until its corresponding
FIN is encountered, or an ELSE at this level occurs. Nested DO,FIN
structures are valuable for putting conditionals in MACRQS.

This inverts the assembly condition (ON--> OFF OR OFF-->
ON) for the last DO.

This cancels the last DO.

25

vi. macros

MAC

EOM
<<<

(MACro)

This signals the start of a MACRO definition. It must be labeled with
the macro name. The name you use is then reserved and cannot be
referenced by things other than the PMC pseudo-op. (Thus, things
like DA NAME will not be acepted if NAME is the label on a MAC.
However, the same thing can be simulated by preceding the macro
by a LABEL EQU *, or a LABEL OS 0, etc. There is rarely any need
to do this.) See the section on MACROS for details of the usage of
macros.

(End Of Macro)
(alternative syntax)

This signals the end of the definition of a macro. It may be labeled
and used for branches to the end of a macro, or one of its copies.

PMC macro name
>>>macro name

(Put MaCro)
(alternative syntax)

This instructs the assembler to assemble a copy of the named macro
at the present location. See the section on MACROS. it may be
labeled.

6. Variables

LABELS beginning with "]"are regarded as VARIABLES. These may be
defined only by EOU and cannot be used to label something else. They can
be redefined as often as you please. The designed purpose of variables is for
use in MACROS, but they are not confined to that use.

Forward reference to a variable is impossible (with correct results) but
the assembler will assign some value to it. That is, a variable should be defined
before it is used.

26

D. MACROS

1. Defining a macro

A macro definition begins with

NAME MAC (no operand)

with NAME in the label field . Its definition is terminated by the pseudo-op
EOM or<<<. The label NAME cannot be referenced by anything other than
PMC NAME (or >>>NAME).

You can simply define the macro the first time you wish to use it in the
program. However, it is preferable to first define all macros at the start of
the program with the assembly condition OFF and then refer to them when
needed.

Macros cannot be nested. Memory restrictions are too stringent to be able
to provide this rarely useful ability. An attempt to nest macros will result
in the NESTED MACROS error message.

Forward reference to a macro definition is not possible, and would result
in a NOT MACRO error message. That is, the macro must be defined before
it is called by PMC.

The conditionals DO, ELSE and FIN may be used inside a macro.
Labels inside macros, such as LOOP and OUT in the example on page 29,

are updated each time PMC is encountered. Thus they may be used to branch
into the middle of a macro as long as the branch is a "backward" one.

Error messages generated by errors in macros usually abort assembly, be­
cause of possibly harmful effects. Such messages will usually indicate the line
number of a PMC rather than the line inside the macro where the error
occurs.

Since additional space is available in the language card version of BIG
MAC, macro nesting is allowed.

27

2. Special Variables

Eight variables, named] 1 through] 8, are predefined and are designed for
convenience in MACROS. These are used in a PMC statement as follows:
The instruction

>>>NAME expr1,expr2,expr3, ...

will assign the value of expr1 to the variable] 1, that of expr2 to] 2, and so
on. An example of this usage is :

TEMP EOU
DO

SWAP MAC
LOA
STA
LOA
STA
LOA
STA
<<<
FIN
>>>
>>>

$10
0

] 1
] 3
] 2
] 1
] 3
]2

SWAP $6,$7,TEMP
SWAP $1000,$6,TEMP

(this program segment swaps the contents of location $6 with that of $7,
using TEMP as a scratch depository, then swaps the contents of $6 with that
of $1000.)

If, as above, some of the special variables are used in the MACRO defi­
nition, then values for them must be specified in the PMC (or >>>) state­
ment. In the assembly listing, the special variables will be replaced by their
corresponding expressions.

The assembler will accept some other characters in place of the space be­
tween the macro name and the expressions in a PMC statement. For example,
you may use "/", ",", "~",or "(".The commas are required, however, and
no extra spaces are allowed.

3. Sample Program

On the next page is a sample program intended to illustrate the usage of
macros with nonstandard variable. It would, however, be simpler and more
pleasing if it used] 1 instead of] MSG . (In that case the variable equates
should be eliminated and the values for] 1 must be specified in the >>>
lines.)

28

HOME
COUT
lEY
STROBE
nos

SENDMSG

LOOP

OUT

JMSG

CETlEY

JMSG

!NVRS

JMSG

NORI!

JMSG

STP

l!I T!!SG

£MSG

!MSG

KMSG

mu
EQU
mu
mu
mu
DO
MAC
LDY
LDA
BEQ
JSR
!NY
BNE
({ {

rm
JSR
mu
)))

LD.,
BPt
RIT
Cl!P
BNE
mu
)i)

Cl!P
BNE
EQU
) })

Cl!P
BNE
mu
i))
CllP
ENE
JKP
AS C
HEX
H S
HU
INV
HEI
ASC
HU

SFC58
HOED
ICO 00
SCO!Q
S3D3
0

10
ll!SG,Y
OUT
COUT

LOOP

HOKE
H!Tl!SG
SENDMSG
KEY
GETKEY
STROBE
~"F"
INV RS

Assembly off
;Sta.rt of definition of the aacro "SENDMSG"

Get a cha.ractec
End of message
Send it

£a ck for 10 re
,End of macro definition and nit fro1 routine
Turi assembly ON
Clur s·~ren

Get input
Key hit yet?
Yes, set up for nezt one

FMSG If so, then it will do this
S£N.DMSG
t" l"
NOR!!
!MSG
SENDMSG
• HN''
STP
NMSG
SENDMSC
I: 11 5 11

GETKEY
DOS
!HJT
S0 8 DOO
"TH IS IS
3DBlm

Does he want to stop'
No, get the next input
All done, exit gcacefully
l KEY : 11 F11 , 11 I 11

1 "Nli, OR "S 11 ~

A FLASHING MESSAGE"

"THIS IS A MESSAGE IN INVERSE"
ms oao
"THIS IS A NORMAL llESSAG£"
808000

29

E. SYMBOL TABLE

The symbol table is printed after assembly unless LST OFF has been in­
voked. It comes first in alphabetical order and then in numerical order. The
symbol table is flagged as follows:

MD = Macro Definition
M Label defined in a macro (LOOP and OUT in the example)
V Variable (symbols starting with])
? A symbol that was never referenced

Internally, these are flagged by setting bits 7 to 4 of the symbols length byte:

?=bit 7 M D=bit 5 M=bit 4

Also, bit 6 is set during the alphabetical printout to flag printed symbols,
then removed during the numerical order printout. The symbol printout is
formatted for an 80 column printer, or for one which will send a carriage
return after 40 columns.

F. TECHNICAL INFORMATION

1. Important Addresses

BIG MAC's address and length are A$803,L$1CFB. You should never
BSAVE BIG MAC with a source file in memory, use NEW in editor mode
first. SOURCE is placed at $2500 when loaded, regardless of its original ad­
dress.

The important pointers, as in TED 11+ are:

START OF SOURCE in
HIMEM in
END OF SOURCE in

$A,$B
$C,$D
$E,$F

(always set to $2500)
(defaults to $8000)

When you exit to BASIC or to the monitor, these pointers are saved at
$809-$80E. They are restored upon reentry to BIG MAC.

Warm entry to EXEC Mode is $806=2054. This is the entry given by a
CALL 6, if you used "Q" to exit from EXEC mode to BASIC. Entry via
$803=2051 will delete the default file name, but is otherwise the same as a
warm start entry. Warm entry directly to the editor is available by typing
Cl 8G, but its use is not recommended as it is possible to lose certain pointers.

Entry into BIG MAC replaces the 1/0 hooks by the standard ones and then
reconnects DOS. (This is the same as typing PR#O and I N#O from the key­
board.) Entry to the EDITOR disconnects DOS (so that you can use labels
such as INIT without disastrous consequences). Reentry to EXEC MODE
disconnects any extent 1/0 hooks that you may have established via the
editor's PR# command, and reconnects DOS. Exit from assembly (comple­
tion of assembly or control C) also disconnects extant 1/0 hooks.

30

There are three bytes of data you may wish to change to suit your own
needs. For that reason, these have been placed in convenient locations, just
below Sweet 16 as shown on the memory map.

$23A5 (SWEET -1} Holds the character "/" ($AF), which is searched for
by the "Update Source?" entry to the assembler module.

$23A4 (SWEET -2) Holds the number (currently 4) of columns that are
printed in the symbol table before a carriage return is sent. This can be
changed to accommodate printers with greater or lesser line lengths. Each
symbol column represents 20 printer columns.

$23A5 (SWEET -3) Holds the "Wild Card" character "N' ($DE), used by
the editor in F(ind) and other search routines.
2. Memory Map

$COOO

$9AA6

$8000

$2500

$23A6

$23A5

$23A4

$23A3

$21DA

$14C6

$0C18

$0803

$0400

$03DO

$0300

$0200

$0100

$0000

-

-

DOS

.,...
OBJECT CODE

I

FREE SPACE

- - - - ___ :f. ________
SYMBOL TABLE

- - - - - --t -------- -
SOURCE FILE

I
SWEET 16 (modified)

Update Source Character

Symbol Fields per Line

Wild Card Character

SYMBOL PRINTER

ASSEMBLER

EDITOR

EXECUTIVE

SCREEN MEMORY

DOS and Monitor Vectors

USER SPACE

Input Buffer and Big Mac Work Area

Microprocessor Stack

Misc. Pointers and Flags used by Big Mac

31

49152

39590

32768

9472

9126

9125

9124

9123

8664

5318

3096

2051

1024

976

768

512

256

0

3. In Case of a Crash

Sometimes, because of static electricity spark or other cause, BIG MAC,
or any program, may crash. Because of this possibility, you should save your
programs at regular intervals while writing them. In case of a crash, however,
you may be able to revive your source by the following procedure.

Exit from BIG MAC (hit RESET if necessary).
Go to the monitor by CALL-151.
Write down the two bytes at $80D,$80E. (If you are operating from In-

teger Basic, which is generally preferable; then use the bytes at $E,$F instead!)
BLOAD BIG MAC (just in case), DO NOT BRUN BIG MAC.
Replace the two bytes you wrote down at $80D,$80E. (No1J.$E,$F .)
Type 803G (RTN) to go to BIG MAC's warm start. A.f
Type E to get to the editor.
Type WO, which will print out the end of source in hex.
If this number looks reasonable, then list the source and check it out.
If not, then type MON to go to the monitor. Try to find the end of source

in memory (one past the last $8D). If assembly had been started, then there
should be an $FF at the end of source. Set $80D,$80E to the address of the
end of source (low byte in $80D). Type control Y to return to BIG MAC.
If things are still not OK, then you have problems.

If DOS has been clobbered, then you have further problems. In this case,
instead of doing the above things, write down the bytes at $80D,$80E
(or $E,$F), reboot from a slave disk not a master disk), BRUN BIG MAC,
go to the monitor and reestablish $80D,$80E as above, and from your data,
and finally type control Y to return to BIG MAC and check things out. For
this reason, BIG MAC is supplied as a 48K slave diskette.

4. Using TED II+ Source Files With BIG MAC

You may simply load in a file created by TED II+ and, in most cases,
assemble it with BIG MAC. Some minor changes to opcodes may be neces­
sary. In particular, you should usually remove any 0!3J opcodes, as these
are rarely of use in BIG MAC.

Also, the editor in BIG MAC has some refinements that will not be used
by this procedure. The file can be converted to the form it would have if
written by BIG MAC simply by running through the entire source in edit
mode, hitting return at each line. For a large source however, a special pro­
gram, FIX has been provided that does this automatically. Simply load in
your file, to to EXEC mode, hit C for the catalog, and BRUN FIX. The fix
will be done almost instantly, and will return automatically to BIG MAC.

Among other things, FIX removes extra spaces at the ends of lines, which
sometimes results in substantial savings in memory. It does not remove extra
spaces within lines, so that it can be used with text files which are not source
files. However, this can be done by typing, from the editor, C" " "
several times until no further changes are made. You should be somewhat
careful with this since you do not want to make such changes in comments
and ASCII strings.

32

G. ERROR MESSAGES

BAD OPCODE
Occurs when the opcode is not valid (perhaps misspelled) or the opcode is
in the label column.

BAD ADDRESS MODE
The addressing mode is not a valid 6502 instruction; for example, JSR
(LABEL) or LOX (LABEL),Y.

BAD BRANCH
A branch (BEO,BCC, etc;) to an address that is out of range, i.e.; further
away than ± 127 bytes.

BAD OPERAND
An illegally formatted operand. This also occurs if you "EQU" a label to
a zero page number after the label has been used. It may also mean that
your operand is longer than 64 characters, or that a comment line exceeds
64 characters. This error will abort assembly.

DUPLICATE SYMBOL
On the first pass, the assembler finds two identical labels.

MEMORY FULL
On the first pass, the symbol table exceeds HIMEM ($8000 by default).
Assembly is aborted by this error.

UNKNOWN LABEL
Your program refers to a LABEL that does not exist. This also occurs if
you try to reference a MACRO definition by anything other than PMC.
This can also occur if the referenced label is in an area with conditional
assembly OFF. (The latter will not happen with a MACRO definition.)

NOT MACRO
Forward reference to a MACRO, or reference by PMC to a label that is
not a MACRO.

NESTED MACROS
A MACRO definition inside another one, or a PMC inside a MACRO
definition.

BAD LABEL
This is caused by an unlabeled EQU or MAC, a label that is too long or
one containing illegal characters.

H. LANGUAGE CARD VERSION

If you have the Language Card version of BIG MAC, all differences between
it and the standard version are detailed in the Language Card Supplement,
which is bound in, or included with this manual. This section should be read
at once, as a number of additional functions have been included, and certain
commands have been modified.

33

SECTION IV OTHER PROGRAMS

A. SOURCEROR

1. Introduction

Sourceror is a sophisticated and easy to use disassembler designed as a
subsidiary to the BIG MAC assembler. It will make BIG MAC source files
out of binary programs, usually in a matter of minutes. Sourceror disassembles
Sweet 16 code as well as 6502 code.

The main part of Sourceror is called SRCRR .OBJ, but this cannot be run
(conveniently) directly, since it may overwrite DOS buffers and bomb the
system. For this reason, a small program named SOURCEROR is provided.
This runs in the input buffer, thus does not conflict with any program in
memory. This small program simply checks memory size, gets rid of any
program such as PLE which would conflict with the main Sourceror program,
sets MAXFI LES 1, then runs SRCRR.OBJ (at $8A00-$9AA5) . To mimi­
mize tHe possibility of accident, SRCRR.OBJ has a default location of $4000
and if you BRUN it, it will just return without doing anyth ing. If you try to
BRUN it at its designed location of $8AOO, however, you could be in for big
trouble. Sourceror assumes the standard Apple screen is being used and will
not function with an 80 column card.

2. Using Sourceror

1. Load in the program to be disassembled. Although Sourceror will
handle programs at any location, the original location for the program is pre­
ferable as long as it will not conflict with Sourceror and the build up of the
source file. When in doubt, load it in at $800 or $803. Small programs at
$4000 and above, or medium sized ones above $6000 will probably be OK
at their original locations.

2. BRUN SOURCEROR
3 . You will be told that the default address for the source file is $2500.

This was selected because it is the address used by BIG MAC (this is not im­
portant, however) and because it does not conflict with the addresses of most
binary programs you may wish to disassemble. Just hit RETURN to accept
this default address. Otherwise, specify (in hex) the address you want.

You may also access a ''secret" provision at this point. This is done by
typing Control S (for "Sweet") after (or in lieu of) the source address. Then
you will be asked to specify a (nonstandard) address for the Sweet 16 inter­
preter. This is intended to facilitate disassembly of programs which use a
RAM version of Sweet 16. 0

34

4. Next, you will be asked to hit RETURN if the program to be d is­
assembled is at its original (running) location. Otherwise, you must specify ,
in hex, the present location of the code to be disassembled . Then, you will
be asked to give the ORIGINAL location of that program.

When disassembling, you must use the ORIGINAL address of the pro­
gram, not the address where the program currently resides . It w ill appear
that you are disassembling the program at its original location , but actually,
Sourceror is disassembling the code at its present location and translating the
addresses.

5 . Next, you will finally see the title page which conta ins a synopsis of
the commands to be used in disassembly. You may now start disassembling
or using any of the other commands. Your first command must include a
hex address. Thereafter this is optional, as we shall explain.

At this point, and until the final processing, you may hit RESET to re­
turn to the start of the Sourceror program. If you then hit RESET once
more, you will exit Sourceror and return to BASIC. (This assumes you are
using the autostart monitor.)

3. Commands Used in Disassembly

The disassembly commands are very similar to those used by the dis­
assembler in the Apple monitor. All commands accept a 4-digit hex address
before the command letter. If this number is omitted, then the disassembly
continues from its present address. A number must be specified only upon
initial entry.

If you specify a number greater than the present address, a new ORG
will be created.

More commonly, you will wish to specify an address less than the present
default value. In this case, the disassembler checks to see if this address equals
the address of one of the previous lines. If so, it simply backs up to that
point. If not, then it backs up to the next used address and creates a new
ORG. Subsequent source lines are "erased". It is generally best to avoid new
OR Gs when possible. If you get a new ORG and don 't want it, try backing up
a bit more until you no longer get a new ORG upon disassembly.

35

L (List)
This is the main disassembly command. It disassembles 20 lines of code.
It may be repeated (e.g., 2000LLL will d isassemble 60 lines of code star­
~ing at $2?00). If a JSR to the Sweet 16 interpreter is found, disassembly
1s automatically switched to Sweet 16 mode.

Command L always continues the present mode (Sweet 16 or normal)
of disassembly.

If an illegal opcode is encountered, then the bell will sound and the opcode
will be printed as three question marks in flashing format. This is only to
call your attention to the situation. In the source code itself, unrecognized
opcodes are converted to HEX data, but not displayed on the screen.

S (Sweet)
This is similar to L, but forces the disassembly to start in Sweet 16 mode.
Sweet 16 mode returns to normal 6502 mode whenever the Sweet 16
RTN opcode is found .

N (Normal)
This is the same as L, but forces disassembly to start in normal 6502 mode.

H (Hex)
This creates the HEX data opcode. It defaults to one byte of data. If you
insert a one byte (one or two digits) hex number after the H, then that
number of data bytes will be generated.

· T (Text)
This attempts to disassemble the data at the current address as an A~CI I
string. Depending on the form of the data, this will (automatically) be
disassembled under the pseudo opcode ASC, DCI, INV or FLS. The appro-

' priate delimiter " or ' is automatically chosen. The disassembly will end
when the data encountered is inappropriate, when 62 charcters have been
treated, or when the high bit of the data changes. In the latter case the
ASC opcode is automatically changed to DCI.

Sometimes the change to DCI is inappropriate. This change can be defeated
by using TT instead of Tin the command.

Occasionally, the disassembled string may not stop at the appropriate place
because the following code looks like ASCII data to Sourceror. In this
event, you may limit the number of characters put into thestring by insert­
ing a (1 or 2 digit hex) number after the T command. This, or TT, may
also have to be used to establish the correct boundary between a regular
ASCII string and a flashing one. It is usually obvious where this should be
done.

Any lower case letters appearing in the text string are shown (while in Sour­
ceror, not in BIG MAC) as flashing letters.

36

W (Word)
This disassembles the next two bytes at the current location as a DA opcode.
Optionally, if the command WW is used, then these bytes are disassembled
as a DOB opcode. Finally, if W- is used as the command, the two bytes are
disassembled in the form DA LABEL-1. (The latter is often the appropriate
form when the program uses the address by pushing it on the stack. You
may detect this while disassembling, or only after the program has been
disassembled. In the latter case, it may be to your advantage to do the dis­
assembly again with some notes in hand.)

4_ Housekeeping Commands

I (Cancel)
This essentially cancels the last command. More exactly, it reestablishes the
last default address (the address used for a command not necessarily at­
tached to an address). This is a useful convenience which allows you to
ignore the typing of an address when a back up is desired . For example:
suppose you type T to disassemble some text_ You may not know what to
expect the following the text, so you can just type L to look at it. Then if,
for example, the text turns out to be followed by some hex data (such as
$8D for a carriage return), then simply type I to cancel the Land type the
appropriate H command.

R (Read)
This allows you to look at memory in a format that makes imbedded text
stand out. To look at the data from $1234 to $i333 type 1234R. After
that, R alone will bring up the next page of memory. The numbers you use
for this command are totall.v independent of the disassembly address. Thus
you may disassemble, then use (address) R, then L (alone i; and the dis­
assembly will proceed just as if you never used R at all. If you don't intend
to use the default address when you return to disassembly, it may be wise to
make a note on where you wanted to resume, or to use the I before the R.

I (Instructions)
This prints the title page out to remind you of the available commands.

Q (Quit)
This ends disassembly and goes to the final processing, which is automatic.
If you type an address before the Q, then the address pointer is backed
to (but not including) that point before the processing. Thus if, at the end
of the disassembly, the disassembled lines include.

2341 - 4C 03 EO
2344- A9 BE 94

JMP
LDA

$E003
$94BE,Y

and the last line is just garbage, then type 23440. This will cancel the last
line, but retain the first.

37

5. Final Processing

After the Q command, the program does some last m inute processing of
the assembled code. If you hit RESET at this time, you will return to BASIC
and lose the disassembled code.

The processing may take from a second or two for a short program to two
or three minutes for a long one. Be patient.

When the processing is done, you are asked if you want to save the source.
(if you don't, it will be lost.) If so, you will be asked for a file name. Sourceror
will append the suffix ".S" to this name and save it to disk .

The drive used will be the one used to BRUN SOURCEROR. Thus, re­
place the disk first if you want the source to go on another disk.

To look at the disassembled source, BRUN BIG MAC and load it in.

6. Dealing with the Finished Source

In most cases, after you have some experience and assuming you used
reasonable care, the source will have few, if any, defects.

You may notice that some DA's would have been more appropriate in
the DA LABEL -1 or the DOB LABEL formats. In this, and similar cases,
it may be best to do the disassembly again with some notes in hand. The dis­
assembly is so quick and painless, this is often much easier than trying to alter
the source appropriately.

The source will have all the exterior or otherwise unrecognized labels at
the end in a table of equates. You should look at this table closely. It should
not contain any zero page equates except ones resulting from DA's or JM P's
or JSR's. This is almost a sure sign of an error (yours, not Sourceror's) in
the disassembly. It may have resulted from an attempt to disassemble a data
area as regular code. Note that if you try to assemble the source under these
conditions, you will get an error as soon as the equates appear. If, as eventu­
ally you should, you move the equates to the start of the program, then you
will not get an error, but the assembly MAY NOT BE CORRECT. Thus,
it is important to deal with this situation first. The trouble here is for the
following reason. If, for example, the disassembler finds the data AD 00
80, it will disassemble it, correctly, as LOA $0080. The assembler, however
always assembles this code as a zero page instruction, giving the two bytes
AD 80. Occasionally you will find a program that uses this form for a zero
page instruction. In that case, you will have to change it to HEX data to have
it .assemble identically to its original form. More usually, however, it was
data in the first place, rather than code, and must be dealt with to get a cor­
rect assembly.

38

7. The Memory Full Message

When the source file reaches within $600 of the start of Sourceror (that
is, when it goes beyond $8400) you will see "MEMORY FULL" and "HIT
A KEY" in flashing format. When you hit a key, Sourceror will go directly
to the final processing. The reason for the $600 gap is that Sourceror needs
a certain amount of space for this processing. It is possible (but not likely)
that part of Sourceror will be overwritten during final processing, but this
should not casue problems since the front end of Sourceror will not be used
again at that point. There is a "secret" override provision at the memory
full point. If the key you hit is Control 0 (for override), then Sourceror will
return for another command. You can use this to specify the desired ending
point. You can also use it to go a little farther than Sourceror wants you to,
and disassemble a few more lines. Obviously, you should not carry this to
extremes.

CAUTION : After exiting Sourceror, do not try to run it again with a CALL.
Instead, run it again from disk. This is because the DOS buffers have been
reestablished upon exit, and have partially destroyed sourceror.

B. HELLO AND GREETINGS

Initially, this diskette has two programs named "Hello". On booting or
running Hello the first time, a fancy title program will be seen. When the
program has been executed, it will delete itself, and a subsequent boot or
RUN HELLO will run the second hello program, which in turn will BRUN
BIG MAC. The original Hello Program also appears on the diskette under the
ti tie "Greetings".

C. THE TEXT FILE COMPANIONS

1. Introduction

A pair of programs, named READER and WRITER, respectively, offer
you the opportunity to use BIG MAC as a limited text editor, and in addition,
permit you to read in source files created in text file format by other assem­
blers, such as Apple Computer's DOS T,ool Kit, then convert to proper
BIG MAC syntax.

39

2. READER

This program will read any sequential text file into B IC MAC's edit buffer,
where the BIG MAC editor may be used for editing, just as you would a
regular source file. When the text has been edited, it may be saved as a binary
file, using MAC's normal S(ave) command, or by using WRITER, it may be
written back to disk as a text file.

Any sequential text file may be read in and edited, for example: EXEC,
data, assembler source, etc. READER will add a "T" prefix to the file name
you supply, thus if your text file does not already have this prefix, it must be
renamed prior to calling READER. Later, you may rename it to its original
name, if desired. Alternate drives or slots may be specified by appending"D?"
or appropriate parameter to the file name given to READER. Lines longer
than 256 characters ($100 bytes) will be split into two lines, and should be
taken into account.

INSTRUCTIONS :
1. BRUN BIG MAC
2. Hit "C" for catalog
3. After the "COMMAND :" prompt, type:

BRUN READER
4. READER will then ask you for the file name to be loaded, which

should then be entered.
5. When the load has been completed, you will be returned to MAC's

EXEC mode. Type "E" to enter the editor.

3. WRITER

This program writes a BIG MAC file into a text file. It makes no difference
what the original form of the file was, once it is in MAC's edit buffer, WR 1-
TER will output it as a text file.

Before using Writer, make certain the file is intact, by using the editor's
L(ist) or P(rint) commands, since WRITER will delete the original file if you
supply WRITER with the same name. Just like READER, WRITER appends
a "T" prefix to the file name, and similarly, you may specify alternate drive
or slot parameters by adding the proper Sor D values to the file name.

INSTRUCTIONS

1. BRUN BIG MAC (if required)
2. Uoad) or create a file
3. Hit "C" for catalog
4. After the "COMMAND :" prompt, type :

BRUN WRITER
5. WRITER will then ask you for the name of the file to be saved, which

should then be entered.

40

D. THE MACRO LIBRARY

A macro library with three example macro programs is included in source
file form on this diskette. The purpose of the library is to provide some
guidance to the newcomer to macros and how they can be used within an
assembly program . Note all macros are defined at the beginning of the source
file , then each example program places the macros where they are needed .
Conditionals are used to determine which example program is to be assembled.

E. AUTOSTART ROM SUPPLEMENT

The "Supplement" is a group of utility routines by Steve Wozniak that
reside in the F4 and F8 ROMs of a standard Apple] [. They are not present
in the Apple] [Plus, nor in an Apple] [that has had the "old" Monitor ROM
replaced with the Autostart ROM . Instructions for using Single Step, Trace,
and the Mini-Assembler can be found in the Apple] [reference manual.
Wozniak's programs have been modified by Guil Banks who, in addition,
wrote the included "Convert" program. Complete documentation for the
Supplement is also contained in the program SUPP LEM ENT.DOC.

The Supplement may be entered from Monitor via the Ctrl Y user function,
and requires that your BASIC hello program contain the two following lines :

100 HIMEM:-29440:REM $8000
110 POKE 1016,76:POKE 1017,0:POKE

1018,141:REM SET CTRL Y JUMP
AT 3F8 TO $8000

The Supplement's prompt character is a ")", and all Monitor commands
may be entered from within the supplement, except that the Mini-Assembler
is enabled by entering a Ctrl A. A slash "/"exits the Mini-Assembler and re­
turns you to the Supplement. The Trace function is also term inated with the
slash. In Trace mode, a Ctrl Swill cause the listing to pause until another key
is hit.

The "Convert" routine will convert a hexadecimal number in the range
0-FFFF to decimal, and display it in both normal and two's complement
decimal equivalent form, and will convert a decimal number in the range
0--65535 to hexadecimal and hexadecimal two's complement, displaying each .
Convert is entered with a Ctrl T, and exited with the slash. Convert mode
is identified by a carat " /\' ' prompt character.

To enter decimal to hex mode, type " " T" followed by a carriage return .
To enter hex to decimal mode, type " " H" followed by a carriage return .
Convert will remain in the conversion mode set by the Tor H parameters

until the alternate parameter is entered, or until a slash is typed. Note that
control returns to the Monitor when any function other than those in the
Supplement is used . Convert does not require or allow negative number in­
puts.

CONVERSION EXAMPLES

" T [c/ rtn] " 936 [c/ rtn] displays : 03A8 FC58
" H [c/ rtn] A FC58 [c/ rtn] displays: 64400 936

41

F. SWEET 16

1. Introduction

by Dick Sedgewick

Sweet 16 is probably the least used and least understood seed in the
Apple] [.

In exactly the same sense that Integer and Applesoft Basics are languages,
Sweet 16 is a language. Compared to the Basics, however, it would be classed
as a low level language, with a strong likeness to conventional 6502 Assembly
language.

To use Sweet 16, you must learn the language - and to quote "WOZ",
"The op code list is short and uncomplicated". "WOZ", of course is Mr.
Apple, and the creator of Sweet 16.

Sweet 16 is ROM based in every Apple] [from $F689 to $F7FC. It has
its own set of op codes and instruction sets, and uses the SAVE and RE­
STOR E routines from the Apple Monitor to preserve the 6502 registers when
in use, allowing Sweet 16 to be used as a subroutine.

It uses the first 32 locations on zero page to set up its 16 double byte
registers, and is therefore not compatible wiith Applesoft Basic without some
additional efforts. //

The original article, "Sweet 16: The 6562 Dream Machine", first appeared
in Byte Magazine, November 1977 and later in the original "WOZ PAK".
This article is included here again as text material to help understand the use
and implementation of Sweet 16.

Examples of the use of Sweet 16 are found in the Programmer's Aid
#1, in the Renumber, Append, and Relocate programs. The Programmers
Aid Operating Manual contains complete source assembly listings, indexed
on page 65. '

Finally, the friendly help of A.P.P.L.E. is available to hand-hold and coun­
sel your adventures with Sweet 16.

The demonstration program is written to be introductory and simple,
consisting of three parts:

1. Integer Basic Program
2. Machine Language Subroutine
3. Sweet 16 Subroutine

The task of the program will be to move data. Parameters of the move will
be entered in the Integer Basic Program.

The "CALL 768" ($300) at line 120, enters a 6502 machine language sub­
routine having the single purpose of entering a Sweet 16 subroutine and sub­
sequently returning to BASIC (addresses $300,$301,$302, and $312 re­
spectively). The Sweet 16 subroutine of course performs the move, and is
entered at hex locations $303 to $311 (see listing Number 3).

After the move, the screen will display three lines of data, each 8 bytes
long, and await entry of a new set of parameters. The three lines of data dis­
played on the screen are as follows:

42

Line 1:

Line 2:

Line 3:

The first 8 bytes of data starting at $800, which is the fixed
source of data to be moved (in this case, the string A$).

The first 8 bytes of data starting at the hex address entered as the
destination of the move (high order byte only).

The first 8 bytes of data starting at $0000 (the first four Sweet
16 registers).

The display of 8 bytes of data was chosen to simplify the illustration of
what goes on.

Integer Basic has its own way of recording the string A$. Because the
name chosen for the string "A$" is stored in 2 bytes, a total of five house­
keeping bytes precede the data entered as A$, leaving only three additional
bytes available for display. Integer Basic also adds a housekeeping byte at the
end of a string, known as the "string terminator" . Consequently, for the pur­
poses of the convenience of the display, and to see the string terminator as
the 8th byte, the string data entered via the keyboard should be limited to
two characters, and will appear as the 6th and 7th bytes. Additionally, para­
meters to be entered include the number of bytes to be moved. A useful
range for this demonstration would be 1-8 inclusive, but of course 1-255 will
work.

Finally, the starting address of the destination of the move must be en­
tered. Again, for simplicity, the high order byte only is entered, and the pro­
gram allows a choice between Decimal 9 and the H.O.B. of program pointer
1, to avoid unnecessary problems (in this demonstration enter a decimal
number between dee 9 and 144 for a 48K APPLE).

The 8 bytes of data displayed starting at $00 will enable one to observe
the condition of the Sweet 16 registers after a move has been accomplished,
and thereby understand how the Sweet 16 program works.

From the article "Sweet 16: The 6502 Dream Machine", it will be remem­
bered that Sweet 16 can establish 16 double byte registers, starting at $00.
That means that Sweet 16 can use the first 32 addresses on zero page.

The "events" occurring in this demonstration program can be studied in
the first four Sweet 16 registers, therefore the 8 byte display starting at
$0000 is large enough for this purpose. These four registers are established as
RO, R1, R2, and R3:

RO
R1
R2
R3

R14
R15

$0000 &
$0002 &
$0004 &
$0006 &

$001C &
$001E &

0001
0003
0005
0007

0010
001F

- Sweet 16 accumulator
- Source address
- Destination address
- Number of bytes to move

- Prior result register
- Sweet 16 program counter

43

Additionally, an examination of registers R14 and R15 will extend an un­
derstanding of Sweet 16, being fully explained in the "WOZ" text. Notice
that the HOB of R 14, (located at $1 D) contains $06, which is the doubled
register specification(3X2=$06).R15, the Sweet 16 program counter contains
the address of the next operation, las it did for each step during execution of
the program), which was $0312 when execution ended, and 6502 machine
code resumes.

To try a sample run, enter the Integer basic program as shown in Listing
#1 . Of course, REM statements can be omitted, and line 10 is only helpful
if the machine code is to be stored on disk.

The Listing #2 must also be entered starting at $300.
Note that a 6502 disassembly does not look like Listing #3, but the in­

cluded Sourcerer disassembler would create a correct dissassembly.

Enter RUN and RETURN

hit RETURN (A$ - A$ string data) Enter 12 and
Enter 8 and hit RETURN (High order byte of destination)

The display should appear as follows:

$0800-C1 40 00 10 08 B1 B2 1E (SOURCE)
$0AOO-C1 40 00 10 08 B1 B2 1E (DEST.)
$0000-1 E 00 08 08 08 OA 00 00 (Sweet 16)

Note that the 8 bytes stored at $0AOO are identical to the 8 bytes starting
at $0800, indicating an accurate move of 8 bytes length has been made. It
will be seen that they are moved one byte at a time starting with token C1
and ending with token 1 E (if moving less than 8 bytes, the data following
the moved data would be whatever exists at those locations before the move) .

The bytes have the following significance :

A Token$

C1 40 00 10 08

I T
VN DSP NVA

The Sweet 16 registers are shown:

Low high low high
$0000 1E 00 08 08

register register
RO R1
(ace) (source)

44

2

B1 B2

I
DATA DATA

low
08

high
OA

register
R2
(dest)

low
00

1E
-r-

String
Terminator

high
00

register
R3

(#bytes)

The low order byte of RO, the Sweet 16 accumulator, has $1 E in it, which
was the last byte moved, (the 8th).

The low order byte of the source register R 1 started as $00 and was in ere·
mented eight times, once for each byte of moved data.

The high order byte of the destination register R2 contains $0A, which
was entered as 10 (the variable!) and poked into the Sweet 16 code. The
LOB of R2 was incremented exactly like R1.

Finally, register R3, the register that stores the number of bytes to be
moved had been poked to 8 (the variable B) and decremented eight times as
each byte got moved, thereby ending up $0000.

By entering character strings and varying the number of bytes to be
moved, the Sweet 16 registers can be observed and in fact, the contents pre·
dieted.

Working with this demonstration program, and study of the text material
will soon enable the writing of Sweet 16 programs to perform additional 16
bit manipulations. The unassigned op codes mentioned in the WOZ "Dream
Machine" article should present a most interesting opportunity to "play".

Sweet 16 as a language - or tool - opens a new direction to Apple] [
owners without spending a dime, and it's been there all the time.

For "Appleites" who desire to learn machine language programming,
Sweet 16 can be used as a starting point. Having less op codes to learn and ex·
cellent text material to use, one could be effective very soon.

For those without Integer Basic, Sweet 16 is supplied as a source file on this
diskette.

>LIST
1 0

2 0
30
4 0
50

6 0
70
B 0
90

1 0 0

1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
170

LISTING #1

PR INT "[DJBLOAD SWEET" : REM CTRL
D

CALL -936: DIM AS<lO)
INPUT "ENTER STRING A$",A$
INPUT "ENTER I BYTES ", B
IF NOT B THEN 40: REM AT LEAST 1

POKE 7 7 8,B : REM POKE LENGTH
INPUT "ENTER DESTINATION",A
IF A) PEEK <203) - 1 THEN 70
IF A< PEEK <205>+1 THEN 70
POKE 776,A : REM POKE DESTINATION

M=8 : GOSUB 160 : REM DISPLAY
CALL 768 : REM GOTO $0300
M=A : G05UB 160 : REM DISP L AY
M = O : GOSUB 160 . REM DISPLAY
PRINT PRINT GOTO 3 0
POKE 60,0 P OKE 61,M
CALL - 605 RETURN REM XAM8 IN
MON I T OH

4 5

LISTING #2

Enter code as follows:

A B

300:20 89 F6 11 00 08 12 00 ~ 13 .~ 00 41 51 52
F3 07 FB 00 60

LISTING #3

Sweet 16

$300 20 89 F6 JSR $F689

$303 11 00 08 SET R1 Source address

$306 12 00 ~ SET R2 destination address
A

$309 13 ~ 00 SET R3 length
B

$30C 41 LD @ R1

$30D 52 ST @R2

$30E F3 DCR R3

$30F 07 FB BNZ $30C

$311 00 RTN

$312 60 RTS

Data will be poked from the Integer Basic program -

''A'' from Line 100
''B'' from Line 60

46

2. SWEET 16: A Pseudo 16 Bit Microprocessor

By Steve Wozniak
a. DESCRIPTION

While writing APPLE BASIC for a 6502 microprocessor, I repeatedly en­
countered a variant of MURPHY'S LAW. Briefly stated, any routine opera­
ting on 16-bit data will require at least twice the code that it should. Pro­
grams making extensive use of 16-bit pointers (such as compilers, editors,
and assemblers) are included in this category. In my case, even the addition
of a few double-byte instructions to the 6502 would have only slightly alle­
viated the problem. What I really needed was a 6502/RCA 1800 hybrid -
a powerful 8-bit data handler complemented by an easy to use processor with
an abundance of 16-bit registers and excellent pointer capability. My solution
was to implement a non-existent (meta) 16-bit processor in software, inter­
preter style, which I call SWEET 16.

SWEET 16 is based on sixteen 16-bit registers (RO-R15), actually 32
memory locations. RO doubles as the SWEET 16 accumulator (ACC), R15
as the program counter (PC), and R 14 as the status register. R 13 holds com­
pare instruction results and R 12 is the subroutine return stack pointer if
SWEET 16 subroutines are used. All other SWEET 16 registers are at the
user's unrestricted disposal.

SWEET 16 instructions fall into register and non-register categories. The
register ops specify one of the sixteen registers to be used as either a data ele­
ment or a pointer to data in memory, depending on the specific instruction.
For example INR R5 uses R5 as data and ST @R7 uses R7 as a pointer to
data in memory. Except for the SET instruction, register ops take 1 byte of
code each. The non-register ops are primarily 6502 style branches with the
second byte specifying a ±- 127 byte displacement relative to the address of
the following instruction. Providing that the prior register op result meets
a specified branch condition, the displacement is added to SWEET 16 PC,
effecting a branch.

SWEET 16 is intended as a 6502 enhancement package, not a stand-alone
processor. A 6502 program switches to SWEET 16 mode with a subroutine
call and subsequent code is interpreted as SWEET 16 instructions. The non­
register op RTN returns the user program to 6502 mode after restoring the
internal register contents (A, S, Y, P, and S). The following example illu­
strates how to use SWEET 16.

300 89 00 02 LOA IN,Y get a char.
303 C9 CD CMP #"M" "M" for move
305 DO 09 BNE NOMOVE No. skip move
307 20 89 F6 JSR SW16 Yes, call SWEET 16
30A 41 MLOOP LO @R1 R1 holds source addr.
308 52 ST @R2 R2 holds dest. addr.
30C F3 OCR R3 Deer. length
300 07 FB BNZ MLOOP Loop until done
30F 00 RTN Return to 6502 mode.
310 C9 C5 NOMOVE CMP #"E" "E" char?
312 DO 13 BEO EXIT Yes, exit
314 C8 INY No, cont.

Note: Registers A, X, Y, P, and Sare not disturbed by SWEET 16.

47

b. INSTRUCTION DESCRIPTIONS

The SWEET 16 opcode listing is short and uncomplicated. Excepting rela­
tive branch displacements, hand assembly is trivial. All register opcodes are
formed by combining two hex digits, one for the opcode and one to specify
a register. For example, opcodes 15 and 45 both specify register R5 while
codes 23, 27 and 29 are all ST ops. Most register ops are assigned in comple­
mentary pairs to facilitate remembering them. Thus LD and ST are opcodes
2N and 3N respectively, while LD@ and ST@ are codes 4N and 5N.

Opcodes 0 to C (hex) are assigned to the thirteen non-register ops. Except
for RTN (opcode), BK (OA), and RS (OB), the non-register ops are 6502
style branches. The second byte of a branch instruction contains a +/-127
byte displacement value (in two's complement form) relative to the address
of the instruction immediately following the branch. If a specified branch
condition is met by the prior register op result, the displacement is added to
the PC effecting a branch. Except for BR (Branch always) and BS (Branch to
Subroutine), the branch opcodes are assigned in complementary pairs, ren­
dering them easily remembered for hand coding. For example, Branch if
Plus and Branch if Minus are opcodes 4 and 5 while Branch if Zero and
Branch if Nonzero are opcodes 6 and 7.

c. SWEET 16 OPCODE SUMMARY

REGISTER OPS

1n SET Rn Constant (Set)
2n LD Rn (Load)
3n ST Rn (Store)
4n LD @Rn (Load Indirect)

5n ST @Rn (Store Indirect)
6n LDD @Rn (Load Double Indirect)
7n STD @Rn (Store Double Indirect)
8n POP @Rn (Pop Indirect)
9n STP @Rn (Store POP Indirect)
An ADD Rn (Add)
Bn SUB Rn (Sub)
Cn POPD @Rn (Pop Double Indirect)
Dn CPR Rn (Compare)
En INR Rn (Increment)
Fn DCR Rn (Decrement)

48

NON-REGISTER OPS

00 RTN (Return to 6502 mode)
01 BR ea (Branch always)
02 BNC ea (Branch if No Carry)
03 BC ea (Branch if Carry)
04 BP ea (Branch if Plus)
05 BM ea (Branch if Minus)
06 BZ ea (Branch if Zero)
07 BNZ ea (Branch if Nonzero)
08 BM1 ea (Branch if Minus 1)
09 BNM1 ea (Branch if Not Minus 1)
OA BK (Break)
OB RS (Return from Subroutine)
oc BS ea (Branch to Subroutine)
OD (Unassigned)
OE (Unassigned)
OF (Unassigned)

d. REGISTER INSTRUCTIONS

SET Rn, Constant Low High (Set)

The 2-byte constant is loaded into Rn (n=O to F, hex) and branch condi ­
tions set accordingly. The carry is cleared.

EXAMPLE

AO SET R 5 , s AD 1 4 R5 no w con tains SA 034

LD Rn (Load)

The ACC (RO) is loaded from Rn and branch conditions set according to
the data transferred. The carry is cleared and contents of Rn are not dis­
turbed .

EXAMPLE

t~: 34 A O
' c ,i.,J

ST Rn

AO
ns AC G ~ w ~ cnta1~s !A 03 4

(Store)

The ACC is stored into Rn and branch conditions set according to the data
transferred. The carry is cleared and the ACC contents are not disturbed.

EXAMPLE

C.o p y the eonter1ts
c~ f t:. : to Rt,

49

LD @Rn j4Nj (Load Indirect)

The Low-order ACC byte is loaded from the memory location whose ad­
dress resides in Rn and the high-order ACC byte is cleared . Branch cond i­
tions reflect the final ACC contents which will always be positive and never
minus 1. The carry is cleared. After the transfer, Rn is incremented by 1.

EXAMPLE

15 34 AO
4S

SET RS ,$AOH
LD @RS

ST @Rn cg

Ace is loaded from mem
location $A034
RS is incr to SA03S

(Store indirect)

The low-order ACC byte is stored into the memory location whose address
resides in Rn. Branch conditions reflect the 2-byte ACC contents. The carry
is cleared. After the transfer Rn is incremented by 1.

EXAMPLE

15 34 AO
16 22 90
45
56

SET
SET
LO
ST

LDD @Rn lsNj

R5,$A034
R6,S9022
@RS
@Rb

Loa.d pointers RS, R6 with
SA034 and $9022
Move byte fr $A034 to $9022
Both ptrs a.re incremented

(Load double-byte indirect)

The low order ACC byte is loaded from the memory location whose ad­
dress resides in Rn, and Rn is then incremented by 1. The high order ACC
byte is loaded from the memory location whose address resides in the incre­
mented Rn, and Rn is again incremented by 1. Branch conditions reflect the
final ACC contents. The carry is cleared.

EXAMPLE

1 S 3 4 A 0 SET R 5 , SA 0 3 4
65 LD D @R 5

The low-order ace by te is
l o a ded from SA0 34,
high-order from $A035
RS i s incremented t o $A036

50

STD @Rn ~ (Store double-byte indirect)

The low -order ACC byte is stored into memory location whose address
resides in Rn, and Rn is then incremented by 1. The high-order ACC byte is
stored into the memory location whose address resides in the incremented
Rn,and Rn is again incremented by 1. Branch conditions reflect the ACC con­
tents which are not disturbed. The carry is cleared.

EXAMPLE

15 3 4 AO
16 22 90
65
76

SET
SET
LDD
STD

POP @Rn ~

RS, $A034
R6,$9022
@RS
@R6

Load pointers RS, R6
w i th $ A 0 3 4 AND S 9 0 2 2
Move double byte from
SA034-35 to $9022-23 . Bo th
pointers incremented by 2

(Pop indirect)

The low-order ACC byte is loaded from the memory location whose ad­
dress resides in Rn after Rn is decremented by 1, and the high order ACC
byte is cleared. Branch conditions reflect the final 2-byte ACC contents
which will always be positive and never minus 1. The carry is cleared. Because
Rn is decremented prior to loading the ACC, single byte stacks may be im­
plemented with the ST @Rn and POP @Rn ops (Rn is the stack pointer).

EXAMPLE

1 s :H AO SET R5 , SA034 In it st ac k pointer
10 04 00 SET R0,4 Load 4 into ace
55 ST @RS Push 4 onto stack
10 05 00 SET RO,S Lo ad 5 i nt o ace
55 ST 1:!HS Push 5 onto st a ck
10 06 00 SE1 RO, 6 Lo ad 6 into a ce
55 ST 1!RS Push 6 onto stack
85 POP @RS Pop 6 0 f f stack i nto acc .
B5 POP @R.5 Poo 5 0 ff st a ck
SS POP l.!R 5 Pop 4 '~ t f stack

51

STP @Rn (STORE POP indirect)

The low-order ACC byte is stored into the memory location whose address
resides in Rn after Rn is decremented by 1. Branch conditions wi ll refl ect
the 2-byte ACC contents which are not modified . STP @Rn and POP @Rn
are used together to move data blocks beginning at the greatest address and
working down. Additionally, single-byte stacks may be implemented w ith t he
STP @Rn ops.

EXAMPLE

111 H AO SET RI! SA 0 3 4 In i t po inters
ls zz 90 SET R5 '

$9 022
84 P OP ~R 4 Move byte 1 r 'J fil

95 STP @R5 $1\033 to Vi Q 2 !
84 POP @Ril Mo ve b y te f r om
95 STP l!R5 s A 03 2 to S 9 0 2 D

ADD Rn (Add)

The contents of Rn are added to the contents of the ACC (R) and the
low order 16 bits of the sum restored in ACC. The 17th sum bit becomes the
carry and other branch conditions reflect the final ACC contents.

EXAMPLE

1 0 3 4 7 f:, 5 ET R G s 7 6 '.l 4
i 1 2 7 4 L SET n i s 4 2 -, n

A A OD R Add RI 1sum=B85B c clear
A D AD [! F v fl,:11.::b F .~cc· rP.0) to $70B6

52

SUB Rn (Subtract)

The contents of Rn are subtracted from the ACC contents by performing
a two's complement addition:

ACC = ACC +Rn + 1

The low-order 16 bits of the subtraction are restored in the ACC. the 17th
sum bit becomes the carry and other branch conditions reflect the final ACC
contents. If the 16-bit unsigned ACC contents are greater than or equal to
the 16-bit unsigned Rn contents, then the carry is set, otherwise it is cleared.
Rn is not disturbed.

EXAMPLE

10 34 76
11 1.7 42
Bl

BO

SET
SET
SUB

SUB

POPD @Rn !en I

R0,$7634
R1,S4227
R1

RO

Init RO <ace>
and R1
Subtract Rl
(dif f=S340D with c set)
Clears acc . <RO>

(Pop Double-byte indirect)

Rn is decremented by 1 and the high-order ACC byte is loaded from the
memory location whose address now resides in Rn. Rn is again decremented
by 1 and the low-order ACC byte is loaded from the corresponding memory
location. Branch conditions reflect the final ACC contents. The carry is
cleared. Because Rn is decremented prior to loading each of the ACC halves,
double-byte stacks may be implemented with the STD @Rn and POPD @Rn
ops (Rn is the stack pointer).

EXAMPLE

1 5 34 AO SET R5 , $A034 In it stack pointer
10 1 2 AA SET RO, $AA12 Load HA12 into acc .
75 STD @RS Push HA12 onto stack
10 34 BB SET RO,$BB34 Load $BB34 into acc .
75 STD @RS Push $ 8834 onto stack
cs POPD @RS Pop $BB34 0 ff stack
cs POPD @RS Pop 5 AA12 off st a ck

53

CPR Rn (Compare)

The ACC (RO) contents are compared to Rn by performing the 16-bit
binary subtraction ACC=Rn and storing the low order 16 difference bits in
R 13 for subsequent branch tests. If the 16-bit unsigned ACC contents are
greater than or equal to the 16-bit unsigned Rn contents, then the carry is set,
otherwise it is cleared. No other registers, including ACC and Rn are disturbed.

EXAMPLE

15 34 AO SF,T R2-,SAD34 Poi T\ t er to mem
1 6 BF AO SET R6,SAOBf Limit address
BO LOOP1 SUB RO Zero data
75 STD @RS Clear 2 lo ens

Increment RS by 2
25 LD RS Compare poi nter RS
D6 CPR R6 to 1 i mi t R6
02 FA BNC LOO Pl Loop i f c clear

INR Rn ~ (Increment)

The contents of Rn are incremented by 1. The carry is cleared and other
branch conditions reflect the incremented value.

EXAMPLE

15 34 AO
BO
SS
ES
55

DCR Rn

SET RS , SA034
S \i\1 RO
ST HS
1NR RS
ST @R5

<Pointer)
Zero to RO
Cl r Locn $A034
Iner RS to $A036
Clrs locn $A036
(not Ll\035)

(Decrement)

The contents of Rn are decremented by 1. The carry is cleared and other
branch conditions reflect the decremented value.

EXAMPLE (Clear 9 bytes beginning at location A034)

15 31! AO SET R5 , $A03q In i t poi nter
H 09 00 S£T Rll,9 In it counter
BO SUB RO Zero ace
SS LOOPZ ST @R S Clear ~ rnem byte
F4 DCR R4 D,:.crement c ount
07 FC BNZ LO GPi. Loop until z ero

54

e. NON-REGISTER INSTRUCTIONS

RTN (Return to 6502 mode)

Control is returned to the 6502 and program execution continues at the
location immediately following the RTN instruction. The 6502 registers
and status conditions are restored to their original contents (prior to entering
Sweet 16 mode).

BR ea (Branch always)

An effective address (ea) is calculated by adding the signed displacement
byte (d) to the PC. The PC contains the address of the instruction immed­
iately following the BR, or the address of the BR op plus 2. The displacement
is a signed twos complement value from -128 to +127. Branch conditions are
not changed.

Note that the effective address calculation is identical to that for 6502
relative branches. The hex add & subtract features of the APPLE] [monitor
may be used to calculate displacements.

d $80 ea PC + 2 128
d $81 ea PC + 2 127

d $FF ea PC + 2 1
d $00 ea PC + 2 + 0
d $01 ea PC + 2 + 1

d $7E ea PC + 2 + 126
d $7F ea PC + 2 + 127

EXAMPLE

$300: 01 50 BR $352

BNC ea ~ 0 (Branch if No Carry)

A branch to the effective address is taken only if the carry is clear, other­
wise execution resumes as normal with the next instruction. Branch condi­
tions are not changed.

BC ea (Branch if Carry set)

A branch is effected only if the carry is set. Branch conditions are not
changed.

55

BP ea (Branch if Plus)

A branch is effected only if the prior 'result' (or most recently transferred
data) was positive. Branch conditions are not changed.

EXAMPLE (Clear mem from A034 to A03F)

15 34 AO SET R5, H034 Init pointer
14 3F AO SET R4 , $A03F I nit 1 i mi t
BO LOOP3 SUB RO
SS ST @RS Clear mem byte

• Increment RS
24 LO R4 Compare 1 i mi t
DS CPR RS to pointer
04 FA BP LOOP3 Lo op un ti 1 done

BM ea (Branch if Minus)

A branch is effected only if prior 'result' was minus (negative, MSB=1).
Branch conditions are not changed.

BZ ea (Branch if Zero)

A branch is effected only if the prior 'result' was zero. Branch conditions
are not changed.

BNZ ea (Branch if Nonzero)

A branch is effected only if the prior 'result' was non-zero. Branch condi­
tions are not changed.

BM1 ea (Branch if Minus 1)

A branch is effected only if the prior 'result' was minus 1 ($FFFF hex).
Branch conditions are not changed.

BRK (break)

A 6502 BRK (break) instruction is executed. Sweet 16 may be reentered
non destructively at SW16d after correcting the stack pointer to its value
prior to executing the BR K.

RS (Return from Sweet 16 subroutine)

RS terminates execution of a Sweet 16 ·subroutine and returns to the
Sweet 16 calling program which resumes execution (in Sweet 16 mode) .
R12, which is the Sweet 16 subroutine return stack pointer, is decremented
twice. Branch conditions are not changed.

56

BS ea (Branch to Sweet 16 subroutine)

A branch to the effective address (PC +2 +d). is taken and execution is
resumed in Sweet 16 mode. The current PC is pushed onto a 'Sweet 16 sub­
routine return address' stack whose pointer is R 12, and R 12 is incremented
by 2. The carry is cleared and branch conditions set to indicate the current
ACC contents.

EXAMPLE (Calling a 'memory move' subroutine to move A034-A03B to
3000-3007)

15 34 AO SET RS , H.034 In i t pointer 1
1 4 3B AO SET R~ , H0.38 In it l i mi t 1
16 00 30 SET R6,S3000 In it pointer 2
oc 1 5 BS MOVE Ca 1 1 move sub r t n

45 MOVE LD @RS Move one
56 ST @R6 byte
24 LD R4
05 CPR RS Test i f done
04 Fl\ BP MOVE
OB RS ;Return

57

f. THEORY OF OPERATION

Sweet 16 execution mode begins with a subroutine call to SW16. The user
must insure that the 6502 is in hex mode upon entry. All 6502 registers are
saved at this time, to be restored when a Sweet 16 RTN instruction returns
control to the 6502. If you can tolerate indefinite 6502 register contents
upon exit, approximately 30 usec may be saved by entering at SW16 + 3o
Because this might cause an inadvertent switch from hex to decimal mode,
it is advisable to enter at SW16 the first time through .

After saving the 6502 registers, Sweet 16 initializes its PC (R15) with the
subroutine return address off the 6502 stack. Sweet 16's PC prints to the lo­
cation preceding the next instruction to be executed. Following the subrou­
tine call are 1-, 2-, and 3-byte Sweet 16 instructions, stored in ascending
memory locations like 6502 instructions. The main loop at SW16B repeatedly
calls the 'execute instruction' routine at SW16C which examines on opcode
for type and branches to the appropriate subroutine to execute it.

Subroutine SW16C increments the PC (R 15) and fetches the next opcode,
which is either a register op of the form OP REG with OP between 1 and 15
or a non-register op of the form 0 OP with OP between 0 and 13. Assuming
a register op, the register specification is doubled to account for the 3 byte
Sweet 16 registers and placed in the X-reg for indexing. Then the instruction
type is determined. Register ops place the doubled register specification in
the high order byte of R14 indicating the 'prior result register' to subsequent
branch instructions. Non-register ops treat the register specification (right­
hand half-byte) as their opcode, increment the Sweet 16 PC to point at the
displacement byte of branch instructions, load the A-reg with the 'prior
result register' index for branch condition testing, and clear the Y-reg.

g. WHEN IS AN RTS REALLY A JSR?

Each instruction type has a corresponding subroutine. The subroutine
entry points are stored in a table which is directly indexed into by the opcode.
By assigning al l the entries to a common page, on ly a single byte of address
need be stored per routine. The 6502 indirect jump might have been used as
follows to transfer control to the appropriate subroutine.

LOA
STA
LOA
STA

#ADRH
IND+1
OPTBL,X
IND

High-order byte.

Low-order byte.

To save code, the subroutine entry address (minus 1) is pushed onto the
stack, high-order byte first. A 6502 RTS (R eturn from Subroutine) is used to
pop the address off the stack and into the 6502 PC (after incrementing by 1).
The net result is that the desired subroutine is reached by executing a su b­
routine return instruction!

58

h. OPCODE SUBROUTINES

The register op routines make use of the 6502 'zero page indexed by X'
and 'indexed by X indirect' addressing modes to access the specified regis­
ters and indirect data. The 'result' of most register ops is left in the specified
register and can be sensed by subsequent branch instructions, since the regis­
ter specification is saved in the high-order byte of R14. This specification is
changed to indicate RO (ACC) for ADD and SUB instructions and R 13 for
the CPR (compare) instruction.

Normally the high-order R 14 byte holds the 'prior result register' index
times 2 to account for the 2-byte Sweet 16 registers and thus the LSB is zero.
If ADD, SUB, or CPR instructions generate carries, then this index is incre­
mented, setting the LSB.

The SET instruction increments the PC twice, picking up data bytes in the
specified register. In accordance with 6502 convention, the low-order data
byte precedes the high-order byte.

Most Sweet 16 nonregister ops are relative branches. The corresponding
subroutines determine whether or not the 'prior result' meets the specified
branch condition and if so, update the Sweet 16 PC by adding the displace­
ment value (-128 to +127 bytes).

The RTN op restores the 6502 register contents, pops the subroutine re­
turn stack and jumps indirect through the Sweet 16 PC. This transfers control
to the 6502 at the instruction immediately following the RTN instruction.

The BK op actually executes a 6502 break instruction (BRK), transfer­
ring control to the interrupt handler.

Any number of subroutine levels may be implemented within Sweet 16
code via the BS (Branch to Subroutine) and RS (Return from Subroutine)
instructions. The user must initialize and otherwise not disturb R 12 if the
Sweet 16 subroutine capability is used since it is utilized as the automatic
subroutine return stack pointer.

i. MEMORY ALLOCATION

The only storage that must be allocated for Sweet 16 variables are 32 con­
secutive locations in page zero for the Sweet 16 registers, four locations to
save the 6502 register contents, and a few levels of the 6502 subroutine re­
turn address stack. If you don't need to preserve the 6502 register contents,
delete the SAVE and RESTORE subroutines and the corresponding subrou­
tine calls. This will free the four page zero locations ASAV, XSAV, YSAV,
and PSAV.

j. USER MODIFICATIONS

You may wish to add some of your own instructions to this implementa­
tion of Sweet 16. If you use the unassigned opcodes $OE and $OF, remember
that Sweet 16 treats these as 2-byte instructions. You may wish to handle
the break instruction as a Sweet 16 call, saving two bytes of code each time
you transfer into Sweet 16 mode. Or you may wish to use the Sweet 16 BK
(break) op as a 'CHAROUT' call in the interrupt handler. You can perform
absolute jumps within Sweet 16 by loading the ACC (RO) with the address
you wish to jump to (minus 1) and executing a ST R 15 instruction.

59

G.UTILITY PROGRAMS

The first group of three programs are superb Assembly Language utilities
written by Steve Wozniak and Allen Baum, and are still found on the origi­
nal Integer Basic F4 ROM. They are supplied in source code format on this
diskette for the benefit of Apple] [Plus owners who do not have integer
Basic. They may be located at any convenient memory location.

1. The Mini-Assembler

This is a simple, but handy assembler., which does not support labels or
line insertion. Each instruction and operand is assembled at entry time, when
it is also checked for correct syntax. Its main purpose is for the speedy entry
of short programs. The prompt is the exclamation point"!", and instructions
on its use may be found on page 66 of the Apple] [reference manual.

2. The Floating Point Routines

These are single precision floating point routines that may be interfaced
to a BASIC or assembly language program. Information on their use may be
found in the WOZPAK. (See "Suggested Reading" in Section 11.)

3. The Multiply Divide Routines

These routines are intended to be used as subroutines in assembly language
programs, providing a four byte multiply or divide result. Brief information
on their use is provided in "The Apple] [Monitor Peeled", and a multiply
demo by Dave Garson is included on this diskette.

4. PRDEC

This is one the most used subroutines in the Integer Basic ROM set. It
is called by virtually every routine which requires the output of an integer
number in the range 0-65535. It is easily integrated into any Assembly Lan­
guage program. To use it, load the accumulator with the high order byte of
[number], load X with the low byte and call PRDEC. Alternatively, store
the high byte in $F3, the low byte in $F2, and call PRDEC+4.

5. MSGOUT

This is a subroutine by Andy Hertzfeld to output ASCII strings from an
Assembly Language program. If BIG MAC's INV or FLS Pseudo-ops are
used in connection with it, the ORA#$80 must be removed, and all normal
ASCII must have the high bit set. Also in the same source file are two simple
subroutines to read ASCII and hexadecimal characters input by the user.

60

6. UPCON

This utility by Glen Bredon is provided for users who do not have a lower
case video display chip. It will search for source file comments beginning
with either "*" or " ;", and convert all lower case characters to upper case.
Load the source file with BIG MAC, then BRUN UPCON. This program is
integrated in the Language Card version of BIG MAC.

7. FIX

Another utility by Glen Bredon, this removes excess spaces from source
files in memory. Some additional information may be found in Section 111,
F ,4, "Using TED] [+Source Files.

H. GAME PADDLE PRINTER DRIVER

When the Apple] [was first developed, there were no printer interface
cards, nor was there really much consideration even given to the need for a
printer. Obviously, the folks at Apple Computer had a requirement to hard
copy their development routines, thus a primitive teletype driver was written
by Randy Wiggington and Steve Wozniak to serve their in house needs. This
was subsequently published in the famous "red book" isntruction manual,
the second for the Apple] [. Along came the Disk] [, and lo and behold,
the driver would not work, since it ignored DOS and set its own 1/0 hooks.
Next the Aldrich brothers took care of this problem, and we were back in
business. By this time, of course, there was no desperate need for a game
paddle driver; interface cards were developed, and worked well. Neverthe­
less, some users continued using the game 1/0. driver, so Dave Garson and
Val Golding again modified the driver so that inverse and flashing charac­
ters would not upset the printer when doing a catalog, etc.

Concurrently, many new interface cards of all kinds were developed for
the Apple, clock cards, 80 column cards, ROM cards, etc., until card space is
now at a premium. Running a serial printer from the game 1/0 port is one
such way in which the user can save both the cost of a printer interface and
the slot space it would occupy. Already the teletype driver has been adapted
to such printers as Integral Data, Base 2, Heath H-14, and others.

As a last step, Glen Bredon has added a number of improvements to the
driver: it can print formatted BASIC listings to any column width, starting
with 1, it can be output with or without video, and the video may be left
on, even when printing beyond 40 columns, something most interface cards
can not do. These functions are handled by BASIC POKE statements to the
flags at the end of the program.

Full documentation and instructions are contained in the source file in­
cluded on this diskette. Naturally, it is completely compatible with BIG
MAC, and called with the BIG MAC USER command. This is set up when it
is first BRUN, which establishes the ampersand hooks, which may also be
used from BASIC.

In addition, the source code is well commented, so that it, in itself, serves
as a tutorial on writing driver routines for different applications, etc.

61

SECTION V USING BIG MAC

By T. Petersen

Notes and demonstrations for the beginning BIG MAC programmer

A. INTRODUCTION

The purpose of this section is not to provide instruction in assembly
language programming, but to introduce BIG MAC to programmers new to
assembly language programming in general and BIG MAC in particular.

Many of the BIG MAC commands and functions are very similar in opera­
tion. This section does not attempt to present demonstrations of each and
every command option. The objective is to clarify and present examples of
the more common operations, sufficient to provide a base for further inde­
pendent study on the part of the programmer.

A note of clarification:

Throughout the BIG MAC manual, various uses are made of the terms
"mode" and "Module".

In this section, "module" refers to a distinct computer program compo­
nent of the BIG MAC system. There are four MODULES:

1. The EXECUTIVE
2. The EDITOR

3. The ASSEMBLER
4. The SYMBOL TABLE GENE­

RATOR

Each module is grouped under one of the two CONTROL MODES: (1) The
EXECUTIVE, abbreviated EXEC and indicated by the '%'prompt, or (2) The
Editor, indicated by the':' prompt.

EXECUTIVE CONTROL MODE EDITOR CONTROL MODE
.Executive Module Editor Module

Assembler Module
Symbol Table Generator Module

The term "mode" may be used to indicate either the current control
mode (as indicated by the prompt) or, alternatively: While in control mode
and subsequent to the issuance of an entry command, the system is said to be
in '[entry command] mode'. For example, while typing in a program after
issuing the ADD command, the system is said to be 'in ADD mode'.

Terminating [entry command] mode returns the system to control mode.

62

B. INPUT

Pr0grammers familiar with some assembly and higher-level languages will
recall the necessity of formatting the input, i.e.: labels, opcodes, operands
and comments must be typed in specific fields or they will not be recognized
by the assembler program.

In BIG MAC, the TABS operator provides a semi-automatic formatting
feature.

When entering programs, remember that during assembly, each space in the
source code causes a tab to the next tab field. As a demonstration, let's enter
the following short routine.

From the very beginning:

1. BRUN BIG MAC
2. When the '%' prompt appears at the bottom of the EXEC mode menu,

type 'E' or 'Z'. This instantly places the system in EDITOR control mode.
If entered with a 'Z', then tab stops are set to zero.

3. As we are entering an entirely new program, use the following entry com­
mand after the ':' prompt - type 'A' (for ADD) and press return. A '1'
appears one line down and to the right, and the cursor is automatically
tabbed one space to the right of the line number. The '1' and all subse­
quent line numbers which appear after return is pressed, serve roughly the
same purpose as line numbers in BASIC, except that in assembly source
code, line numbers are not referenced for jumps to subroutines, or in
GOTO-like statements.

4. On line 1, enter a '*'. An asterisk as the first character in any line is simi­
lar to a REM statement in BASIC - it tells the assembler that this is a
remark line and anything after the asterisk is to be ignored. To confirm
this, type the title 'DEMO PROGRAM 1' and hit return.

5. After return, the cursor once again drops down one line, a '2' appears and
the cursor skips a space.

6. Now, hit the space bar once and type 'OBJ', space again, type '$300',
and hit return. Note in most cases the 'OBJ' pseudo-op is neither required
nor desirable.

7. On line 3, perform the same sequence: space, type 'ORG', space, type
'$300', return.

8. On line 4, do not soace once after the line number. Type 'BELL', space,
'EQU', space, '$FBDD', return.

9. Line 5 - Type 'START', space, 'JSR', space, 'BELL', space, ';' (semi­
colon). 'RING THE BELL', return.

Semicolons are a convention sometimes used within command lines
to mark the start of comments. Unlike the asterisk, they are not required
and may be omitted entirely, unless no operand is present.

10. Line 6 -_'EN D', space, 'RTS', return.
11. The program has been completely entered, but the system is still in ADD

mode. To exit ADD just hit return, or type Ctrl X, return. The':' prompt
reappears at the left of the screen, indicating that the system has returned
to control mode.

63

12. The screen should now appear like this :

A
1 *DEMO PR OG RAM 1
2 08.J $ 3QO
3 ORG $300
4 Fl F L L EQ U $F B U D
5 START JSR EELL ~RUJr-; TH E B ELL
6 END HTS
7 \

13. Now, type 'L', the LIST command, after the'.' prompt, and return.

: L

1 '" DEMO PR Cl GRAM
2 OBJ $ 300
3 o Rc s ~ ca

4 BEL L EQU SF BDD
5 START JSR EEL ' . ; HING THE B

ELL
6 ENP R'T 3

NOTE: All listings in this section are shown in standard 40X24 format.
However, if tab stops had been zeroed with the TABS command, the'ELL'
of 'RING THE BELL. would have appeared on the same line.

To the right of the column of numbers is the original source code, now
formatted. Compare it to the source as originally input. Note that each string
of characters has been moved to a specific field. There are four such fields.
Counting right from the column of line numbers:

Field One is reserved for labels. BELL, START and END are examples of
labels.

Field Two is reserved for opcodes, such as the BIG MAC pseudo-ops
OBJ, ORG and EOU, and the 6502 opcodes JSR and RTS.

Field Three is for operands, such as $300, $FBDD and, in this case,
BELL.

Field Four will contain any comments.
It should be apparent that the lesson of this exercise is that it is not nec­

essary to input extra spaces in the source file for formatting purposes.
After the line numbers :
Do not space for a label.

64

Space once after a label (or, if there is no label, once after the line num­
ber) for the opcode.

Space once after the opcode for the operand.

Space once after the operand for the comment. If there is no operand, in­
put two spaces after the opcode. The first space after the opcode will
cause a tab to the comment field, where a semi-colon [;] is required if
no operand is present.

C. SYSTEM AND ENTRY COMMANDS

BIG MAC has a powerful and complex built-in editor. Complex in the
range of operations possible but, after a little practice, remarkably easy to
use.

To fully explain and demonstrate each editing option and all system entry
commands would require a separate manual. The definitions in Section 111,
"System Commands" and "Entry Commands", should be sufficient to ex­
plain these operations, so the following paragraphs contain only minor clari­
fications and brief demonstrations on the use of both sets of commands.

All System and Entry commands are used in EDITOR Control Mode im­
mediately after the ':'prompt.

Ctrl - X or a return as the first character of a line exits the current [entry
command] mode and returns the system to control mode when ADDing or
INSERTing lines. Ctrl C exits edit mode and returns the system to control
mode after Editing lines.

The other System and Entry Commands are terminated either automati­
cally or by pressing return.

Inserting and deleting lines in the source code are both simple operations.
The following example will INSERT three new lines between the existing
lines 4 and 5.

1. After the':' prompt, type 'I' (INSERT), the number '5'. and press return.
All inserted lines will precede the line number specified in the com-

mand.
2. Input an asterisk, and return. Note that INSERT mode has not been ex ited.
3. Repeat step 2.
4. Input one space, type 'TYA'. and return .

On the screen is now the following:

:15
5*
6 *
7TYA
8

5. Hit return, and the system reverts to control mode.

65

6. LIST the source code.

: L

1 *D EMO PROGRAM 1
2 OBJ $300
3 ORG $3 00
4 BELL E QU H'B DD
5 *
6 *
7 TYA
8 START J SR BELL ; RING THE B

ELL
9 END RTS

The three new lines (5, 6, and 7) have been inserted, and the subsequent
original source lines {now lines 8 and 9) have been renumbered.

Using DELETE is equally easy.

1. In control mode, input '05', and return. Nothing new appears on the
screen.

2. LIST the source code. The source listing is one line shorter, one of the
asterisk-only lines has disappeared, and the subesquent lines have been re­
numbered.

It is possible to delete a range of lines in one stop.

1. In control mode, input '05,6' and return .
2. LIST the source.

Lines 5 and 6 from the previous example, which contained the remain­
ing asterisk and the TY A opcode, have been deleted, and the subsequent
lines renumbered. The listing appears the same as in the subsection on INPUT,
Step 13.

This automatic renumbering feature makes it important that when deleting
lines you remember to begin with the highest line number and work back to
the lowest.

The EDIT command has several sub-commands comprised of Ctrl - charac­
ters. To demonstrate, using our BELL routine :

1. After the ':' prompt, enter 'E ' {the EDIT command) and a line number
. . . use '6' for th is demonstration, and hit return. One line down and to
the right the specified line appears in its formatted state:

6 END RTS

and the cursor is over the 'E' in 'END '.

66

2. Type Ctrl-D. The character under the cursor disappears. Type Ctrl-D
again, and a third time. 'END' has been deleted, and the cursor is posi­
tioned to the left of the opcode.

3. Hit return and LIST the program. In line 6 of the source code, only the
line number and opcode remain.

4. Repeat step 1 (above).
5. This time, type Ctrl-1. Don't move the cursor with the space bar or arrow

keys. Type the word 'END', and return.
6. LIST the program. Line 6 has been restored.

If you are editing a single line, hitting return restores control mode and the
prompt. In step 1 (above). if you had specified a range of lines (ex : 'E3,6').
after issuing the EDIT command, return would have called up the next se­
quential line number within the specified range. As the lines appear, you have
the options of editing using the various sub-commands, pressing return which
will call up the next line, or exiting the EDIT mode using Ctrl-C. Note
hitting return will enter the entire line in memory, exactly as it appears on
the screen.

The other sub-commands, Ctrl-characters used under the ED IT command,
function similarly. Read the definitions in Section 111 and practice a few
operations.

D.ASSEMBLY
The next step in using BIG MAC is to assemble the source code into object

code.
After the ':'prompt, type the edit module system command ASM and hit

return. On your screen is now the following :

UPDATE SOURCE Y/N?

Type N, hit return, and you will see :

· A Sl1

0 3 () 0

0 3 0 3

2 0 DD FB
; RI N G Tl-1E

60

·- - END AS 3 H1BL Y

EH ROH::O, : 0

4 BYTE::;

1
2
" .)

·'l

BELL

* DEMO

SE L ~ ..

PROGR AM
CJ B.J
OHG
EOU
.J::O R

SYMBO L T AB L E - AL P HABETICAL ORD F R

$ 3 0 0
$3 0 0
$ F BOD
BEL L

BELL
START

=S F E3DJ
·=-~O :iGD

f.ND : $ 0 3G i
?

SY MBOL TA BLE - NUM F RICA L ORDFR

~.T A R.T

BEL L
:dO '.i O O
=. S F U DD

67

If instead of completing the above listing, the system beeps and displays
an error message, note the line number referenced in the message, then press
return until the " . .. BYTES .. . " message appears. Then refer back to the
subsection on INPUT and compare the listing with Step 13. Look especially
for elements in incorrect fields.

If all went well, to the right of the column of numbers down the middle
of the screen is the, by now familiar, formatted source code.

To the left of the numbers, beginning on line 5, is a series of numeric and
alphabetic characters. This is the object code - the opcodes and operands
assembled to their machine language hexadecimal equivalents.

Left to right, the first group of characters is the routine's starting address
in memory (see the definitions of OBJ and ORG in Section Ill - BIG MAC
System Pseudo-Ops). After the colon is the number '20'. This is the one-byte
hexadecimal code for the opcode JSR.

Note that the label 'START' is not assembled into object code; neither are
comments, remarks, or pseudo-ops such as OBJ and ORG. Such elements are
only for the convenience and utility of the programmer and the use of the
assembler program. They are of no use to the computer and, therefore, are
not translated into the machine's language.

The next two bytes (each pair of characters is one byte) on line 5 bear a
curious resemblance to the last group of characters on line 4 ; have a look.
In line 4 of the source code we told the assembler that the label 'BELL'
EOUated with the address $FBDD. In line 5, when the assembler encoun­
tered 'BELL' as the operand, it substituted the specified address. The se­
quence of the high and low-order bytes was reversed, a 6502 microprocessor
convention.

The rest of the information presented explains itself: The total errors
encountered in the source code was zero, and four bytes of object code
(count the bytes following the addresses) was generated.

E.SAVING AND RUNNING PROGRAMS

The final step in using BIG MAC is running the program.
Before that, it would be a good idea to save the source code.

1. Return to control mode, if necessary, and type 'Q', return . The system has
quit EDITOR Mode and reverted to EXECUTIVE (EXEC) mode. If the
BIG MAC System disk is still in the drive, remove it and insert an initial­
ized work disk.

After the '%' prompt, type 'S' (the EXEC mode SAVE SOURCE
FILE command) . The sytem will ask for a file name. Type 'DEM01',
return. After the program has been saved, the prompt returns.

2. Type 'C' (CATALOG) and scan the disk catalog.
The source code has been saved as a binary file titled "DEM01.S".

The suffix ".S" is a file-labelling convention which indicates the subject
file is source code. This suffix is automatically appended to the name by
the S (SAVE SOURCE FILE) command.

3 . Hit any key to return to EXEC mode and input 'O', for OBJECT CODE
SAVE . The object file is saved under the same name as was earlier speci­
fied for the source file. There is no danger of overwriting the source file
because no suffix is appended to object code file names.

68

OBJECT CODE SAVE must be preceded by a successful assembly.
While writing either file to disk, BIG MAC also displays the address para­

meter, and calculates and displays the length parameter. It's a good practice
to take note of these. Viewing the catalog will show that although the op­
tional A$ and L$ parameters were displayed on the EXEC mode menu, they
were not saved as part of the file names. If you'd prefer to have this informa­
tion in the disk catalog, use the DOS RENAME command. Make sure no
commas are included in the new file name.

Return to EDITOR mode, type 'MON', return, and the monitor prompt
•*• appears. Input '300G'. Press return. A beep is heard. The demonstration
program was responsible for it. It works!

Now you can return to the EXEC by typing Ctrl-Y and hitting return.
A control character is always entered by holding down the CTR L key and the
character key together.

SUGGEST10NS FOR ADDITIONAL READING may be found on page 8.

69

ABORT

ACCESS
ADDRESS
ALGO-

RITHM
A LLOCATE
ASCII

BASE

BINAR Y

BIT

BRANCH

BUF FE R

BYTE

CARRY

CHIP

CODE

CTRL

CURSOR

SECTION VI GLOSSARY

-terminate an operation
prematurely
-locate or retrieve data
-a memory location
-portion of a program sol-
ving a specific problem
-set aside or reserve space
-industry standard system
of 128 computer codes as­
signed to specified a!pha­
numeric and special charac­
ters

-in number systems, the ex­
ponent at which the system
repeats itse lf ; the number of
symbols required by that
number system
- the base 2 number system,
composed solely of the
numbers zero and one
-one unit of binary data,
either a zero or a one
-resume execution at a
new location
-large temporary data
storage area
- hex representation of 8
binary bits

-flag in the 6502 status
register
-tiny piece of silicon or
germanium containing many
integrated circuits
- slang for data or machine
language instructions
- abbrev. control or control
character
-character, usually a flash-

70

DATA

DECRE­
MENT

DEFAULT

DELIMIT

DISPLACE­
MENT

EQUATE
EXPRES­

SION

FETCH
FIELD

FLAG

HEX

HIGH
ORDER

ing inverse space, which
marks the position of the
next character to be typed

-facts or information used
by or in a computer or com­
puter program
-decrease value in con­
stant steps
- nominal value or condi­
tion assigned to a parameter
if not specified by the user
-separate, as with a : in
a BASIC program line
-constant or variable used
to calculate the distance
between two memory lo­
cations

- establish a variable
-actual, implied or sym-
bolic data

-retrieve or get
-portion of a data input
reserved for a specific type
of data
- register or memory loca­
tion used for preserving or
est ab I ish i ng a status of a
given operation of condi­
tion

- the hexadecimal [BASE
16} number system, com­
posed of the numbers 0-9
and the letters A-F
- the first , or most sig­
nificant byte of a two byte
hex address or value

HOOK -vector address to an I /0
routine or port

INCRE- -increase value in con-
MENT stant steps

INITIALIZE -set all program parameters
to zero, normal, or default
condition

1/0 -input/output
INTERFACE-method of interconnecting

peripheral equipment
INVERT -change to the opposite

state

LABEL

LOOKUP
LOW

ORDER

LSB

MACRO

MICRO­
PROCES­

SOR
MOD

MODE

-name applied to a variable
or address, usually descrip­
tive of its purpose
-slang; see table
-the second, or least signi-
ficant byte of a two byte
hex address or value
-least significant [bit or
byte] one with the least
value

-i n assemblers, the capa­
bility to "call" a subroutine
by a symbolic name and
place it in the object file
-heart of a microcomputer,
in the Apple, the 6502 chip

-algorithm returning the
remainder of a division
operation
-particular sub-type of
operation

MODULE -portion of a program de-
voted to a specific function

MNEMONIC -symbolic abbreviation
using characters helpful in
recalling a function

MSB -most significant [bit or
byte] one with the greatest
value

NULL

OBJECT
CODE

OFFSET
OPCODE

OPERAND

-without value

-ready to run code pro­
duced by an assembler
program
-value of a displacement
-instruction to be execu-
ted by the 6502
-data to be operated on by
a 6502 instruction

71

PAGE

PARA­
METER

PERI­
PHERAL

POINTER

PORT

PROMPT

PSEUDO

RAM
REGISTER

RELATIVE

ROM

SIGN BIT

SOURCE
CODE

STACK

-a 256 byte area of memory
named for the first byte of
its hex address
-constant or value required
by a program or operation to
function
-external device

-memory location con­
taining an address to data
elsewhere in memory
-physical interconnection
point to peripheral equip­
ment
-a character asking the user
to input data
-artificial, a substitute for

-random access memory
-single 6502 or memory
location for data storage
-branch made using an
offset or displacement
-read only memory

-bit 7 of a byte; negative
if value greater than $80
-data entered into an
assembler which will pro­
duce a machine language
program when assembled
-temporary storage area
in RAM used by the 6502
and assembly language
programs

STRING -a group of ASC 11 charac-
ters usually enclosed by
delimiters such as ' or "

SWEET 16 -program which simulates
a 16 bit microprocessor

SYMBOL -symbolic or mnemonic
label

SYNTAX -prescribed method of

TABLE

data entry

-list of values, words, data
referenced by a program

TOGGLE -switch from one state to
the other

VARIABLE -alphanumeric expression
which may assume or be
assigned a number of values

VECTOR -address to be referenced
or branched to

SECTION VIII - CREDITS

As a program, BIG MAC is essentially new from the ground up. However,
in terms of format, appearance and conventions, it is but one of many im­
provements and upgradings of the original TED/ASM, as outlined in Section
I. Becasue so many individuals have contributed to TED, and hence, BIG
MAC, in terms of ideas, programming and documentation, and to this dis­
kette, it would not be cricket to cont:lude BIG MAC's documentation
without expressing our thanks to those listed below for, in varying degrees,
their efforts. In alphabetical order:

Darrell Aldrich
Ron Aldrich
Allen Baum
Glen Bredon
Dave Garson
Val Golding

Andy Hertzfeld
Neil Konzen
Dan Paymar

Terry Petersen
Pete Rowe

Dick Sedgewick
Gary Shannon

Ken Smith
Peter Soule

Wayne Throop
Steve Wheeler

Randy Wiggington
Steve Wozniak

Without the work and dedication of all of the above, BIG MAC could
never have become with we believe it to be : the finest available editor/
assembler for the Apple] [.

A special credit is due to Steve Jobs and Steve Wozniak, without whom
there never would have been an Apple] [.

72

SECTION I QUICK REFERENCE COMMAND SUMMARY

Command

C: CATALOG
L: LOAD
R : READ
S: SAVE
W: WRITE
A: APPEND
D : DRIVE
E: EDIT
Z: ZERO TABS
0: OBJ SAVE
Q: QUIT

Hlmem:
NEW
PR#
USER
TABS
LENgth
Where
MONitor
TRuncON
TRuncOF
STRIP
Quit
SYM
ASM
Delete
Replace
Ust
Print
I
Find
Chi!_nge
COPY
MOVE
Edit

Add
Insert

. Ctrl L
Ctrl 0
Ctrl X

Ctrl I
Ctrl 0
Ctrl D
Ctrl F
Ctrl B
Ctrl N
Ctrl L
Ctrl R
Ctrl C
Ctrl Q
[return]

Description
EXEC MODE

Display catalog and allow DOS commands
Load a source file from disk
Read a text file from disk
Save a source file to disk
Write a text file to disk
Load a source file at end of file in memory
Toggle from drive 1 to drive 2
Enter edit/asm mode
Enter edit/asm mode with tabs set to 0
Save object code after successful assembly
Exit to BASIC

EDITOR
Command Mode

Sets upper limit for source file
Deletes present source, resets Himem:
Same function as BASIC PR#
Executes user routine at $3F5
Sets tab stops for editor list ing
Returns number of bytes in source file
Returns memory address of specified line number
Exits to monitor. Return with Ctrl Y
Omits comments prefixed";" &ASCII , HEX obj code
Reset truncate flag to defau lt
Strip comments prefixed "*"or " ;" from source
Exit to EXEC mode
Establishes user symbol table area
Commences assembly
Delete line number, range, or range list
As above, then falls into Insert mode
List source file with line numbers
List source without line numbers
Continue List from last line number
Find d-string specified
Replace d-string1 with d -stnng 2
Copy line number range to above specified line
As above, but deletes original lines
Edit line number or range specified

Add/insert mode
E;nter text. entry mode
Enter text entry mode just above specified line
Case toggle : se lect opposite case
Enter non-keyboard characters
Exit text entry mode

Edit mode
Insert character(s)
Insert Control character
Delete characteds)
Find next occurrence of character after Ctrl F
Place cursor at beginning of line
Place cursor at end of line
Change case of character under cursor
Restore line to origina l form
Exit Edit mode
Enter line up to cursor position
Enter entire line as it appears

Page

9
9

LC
9

LC
9

10
10
10
10
10

11
11
11
11
12
12
12
12
12
12
LC
12
LC
13
13
13
13
13
14
14
14
14
14
14

15
15
15
LC
15

16
16
16
16
16
16
16
16
16
16
16

Command

+

&

$
%

#<
H>
#/

EQU

VAR
ORG
OBJ
SAV
PUT
CHK
END

LSTON
LST OFF
EXP ON
EXP OFF
TR ON
TR OFF
PAU
PAG
AST
SKP

ASC
DCI
INV
FLS

DA
DDB
DFB
HEX
OS

DO
ELSE
FIN

MAC
EOM
<<<
PMC
>>>

Description
ASSEMBLER EXPRESSIONS

Add
Subtract
Multiply
Divide
Exclusive or
Or
And
Decimal data
Hexadecimal data
Binary data
Immediate mode (low byte of expression)
Low byte of expression
High byte of expression
Optional syntax for above

ASSEMBLER PSEUDO-OPS
Directives

Equate label to address or data
Alternate syntax for equate
Equate special variables (])
Establish run address
Establish alternate assembly storage address
Saves object code to this point.
Insert file during .assembly
Places obj. code checksum in source
Signifies end of source to be assembled

Formatting
Sends assembly to screen or other output
Turns off output during assembly
Prints all code during assembly
Omits printing m~cro object code during assembly
Prints maximum of 3 object bytes during assembly
Resets truncate flag to deafu It
Second pass assembly waits for keypress
Outputs a form feed to printer
Outputs n asterisks to assembly listing
Outputs n carriage returns to assembly listing

String
Enter a delimited ASC 11 string into object code
As above, but with hi bit of last chr set opposite
Enter a delimited string as inverse
Enter a delimited string as flashing

Data and Allocation
Enter two byte value, low byte first
As above, but high byte first
Enter multiple bytes of data, delimited by comma
As above, comma not required, hex data only
Reserve n bytes of space

Conditionals
If 0, discontinue assembling code
Invert the previous assembly condition set by DO
Cancel the last DO

Macros
Start of macro definition
End of macro definition
Alternate syntax for above
Assemble macro at present location
Alternate syntax for above

LC: Command available on Language Card version only.

Page

18
18
18
18
18
18
18
18
18
18
19
19
19
19

21
21
LC
21
21
LC
LC
LC
21

22
22
22
22
LC
LC
22
22
22
22

23
23
23
23

24
24
24
24
24

25
25
25

26
26
26
26
26

Apple
PugetSound
Program
Library
Exchange

- .

304 Main Ave. S.
Suite 300
Renton, Washington
98055
(206) 271-4514

	Big Mac Macro-Assembler/TED
	Section I: Quick Reference Command Summary Tear-Out Card
	Table of Contents
	Section I: Quick Reference Command Summary
	Section II: Overview
	A. Assembly Language Whys and Wherefores
	B. Background and Features
	C. Suggested Reading

	Section III: Big Mac
	A. Exec Mode
	B. The Editor
	C. The Assembler
	D. Macros
	E. Symbol Table
	F. Technical Information
	G. Error Messages
	H. Language Card Version

	Section IV: Other Programs
	A. Sourceror
	B. HELLO and Greetings
	C. The TEXT File Companions
	D. The Macro Library
	E. Autostart ROM Supplement
	F. Sweet 16
	G. Utility Programs
	H. Game Paddle Printer Driver

	Section V: Using Big Mac
	A. Introduction
	B. Input
	C. System and Entry Commands
	D. Assembly
	E. Saving and Running Programs

	Section VI: Glossary
	Section VIII: Credits

